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Foreword 

The Run-Off-Road Collision Avoidance Using IVHS Countermeasures program is to address the 
single vehicle crash problem through application of technology to prevent, and/or reduce the 
severity of, these crashes. The prime contractor for this effort is Carnegie Mellon University 
(CMU) operating under Contract No. DTNH22-93-C-07023. Members of the project team 
include Battelle Memorial Institute, Calspan Corporation and the University of Iowa. 

The program consists of a sequence of nine related tasks to be completed in three distinct program 
phases. Phase I of this effort is currently fully funded and is comprised of the first four program 
tasks. Primary task completion responsibility has been assigned to individual team members with 
Calspan conducting Tasks 1 and 2, CMU conducting Task 3, and Battelle conducting Task 4. As 
prime contractor, CMU provides guidance and oversight to all subcontractor efforts. 

The Task 1 and Task 2 efforts have been completed. The Task 1 effort involved characterizing the 
circumstances in which run-off-road crashes occur by analyzing the national crash databases 
(NASS CDS and GES databases). The Task 2 effort involved classifying the crash circumstances 
into similar subsets, identifying opportunities for intervention within these subsets, and formulat- 
ing functional goals for countermeasures that would prevent or reduce the severity of run-off-road 
crashes. 

The Task 3 effort, described in this report, focused on testing of existing technology to meet the 
functional goals identified in Task 2. These tests included all aspects of countermeasure perfor- 
mance, include sensing functions, algorithm or decision making functions and driver interface 
functions. Tests of existing technology were performed using a range of techniques and facilities, 
include laboratory experiments, in-vehicle tests and driving simulator experiments. 

Technical results from the Task 3 tests will be utilized in Task 4 to develop computer models of 
countermeasure effectiveness, and to develop preliminary specification for run-off-road counter- 
measure performance characteristics. In addition, it is anticipated that this report will function as a 
resource for reference for Phase II and Phase III tasks. 
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1.0 Introduction 

Run-off-road crashes, also called Single-Vehicle Roadway Departure (SVRD) crashes, are 
defined in this program to include all one vehicle crashes where the first harmful event occurs 
after the vehicle left the road surface, except for backing and pedestrian related crashes. As was 
determined in Task 1, these crashes are caused by a variety of factors, including: 

l Driver inattention - typically due to internal or external distraction 

l Driver incapacitation - typically drowsiness or intoxication 

l Evasive maneuvers - driver steers off road to avoid obstacle 

l Lost directional control - typical due to wet or icy pavement 

l Excessive speed - traveling too fast to maintain control 

l Vehicle failure - typically due to tire blowout or steering system failure 

Single vehicle run-off-road crashes represent the most serious crash problem within the national 
crash population. Analysis of the 1992 NASS GES file, conducted as part of the Task 1, indicated 
that approximately 1.21 million police-reported crashes of this type occurred in the US in that 
year. This number represented approximately 20.1 percent of the crashes in the GES database. In 
addition, more than 520,000 vehicle occupants were injured in run-off-road crashes in 1992 and 
this level of injury represented approximately 26.8 percent of the injuries in the GES database. In 
a similar manner, the 14,03 1 fatalities sustained in run-off-road crashes (FARS data) represented 
approximately 41.5 percent of the 33,846 in-vehicle fatalities that occurred in 1992 in the US. 
Thus, in terms of injury frequency and severity, run-off-road crashes are an extremely serious 
problem. 

The goal of the Run-Off-Road Collision Avoidance Using IVHS Countermeasures program is to 
address this crash problem through the application of technology to prevent, or reduce the sever- 
ity of, these crashes. Advances in sensor and processing capabilities over the past decade allow 
for real time collection and analysis of the information characterizing the vehicle’s operating 
environment and the driver’s performance. Application of these technologies is an integral part of 
a program intended to dramatically improve vehicle safety. This program, titled Intelligent Trans- 
portation Systems (ITS), formally titled Intelligent Vehicle Highway System (IVHS), will address 
the run-off-road crash problem, as well as a broad spectrum of transportation issues. 

The current program consists of a sequence of nine related tasks to be completed in three distinct 
phases. Phase I of this effort is currently underway, and is comprised of the four tasks summarized 
below: 

l Task 1: Thoroughly Analyze the Crash Problem 

l Task 2: Establish Functional Goals 

l Task 3: Conduct Hardware Testing of Existing Technologies 

l Task 4: Develop Preliminary Performance Specifications Based on Critical Factors and 
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Models of Crash Scenarios 

The Phase I work flow is linear in nature in that the output of one task is utilized as an input to 
subsequent tasks. In Task 1, for example, data analyses were conducted to determine the circum- 
stances associated with run-off-road crashes and the reasons why these crashes occurred. Engi- 
neering evaluations were also completed to establish the dynamic states of involved vehicles and 
the sequence of events associated with the crashes. These results were carried forward to Task 2 
where a taxonomy was developed to classify the run-off-road scenarios in terms of the relative 
length of time over which the road departure occurred. This information was used to develop 
practical functional goals for potential countermeasures. 

In the Task 3 effort described in this report, the functional goals developed in Task 2 were used to 
formulate complete run-off-road countermeasures. These countermeasures were built and tested 
in situations that were identified in Task 1 to be representative of roadway departure crashes. The 
results of these testing efforts will be incorporated into the mathematical models developed for 
Task 4, and thereby influence the preliminary performance specifications developed in that effort, 

Subsequent phases of this program will continue the development sequence. ‘For example, in 
Phase II the contract team will perform state-of-the-art technology reviews and design test bed 
systems, The test bed systems will be evaluated in Phase III. The results of these Phase III tests 
will be used to modify and expand the preliminary performance specifications from Task 4. 

The hardware testing for Task 3 has been completed. The purpose of this report is to describe and 
document the systems tested and the results obtained. Countermeasure design implications of 
these results are also addressed. The report is divided into two volumes. The first contains results 
of in-vehicle and laboratory tests of the sensor and algorithm components of run-off-road counter- 
measures. Volume II contains results of experiments on the Iowa driving simulator to evaluate 
alternative driver interfaces for roadway departure countermeasures. The format and section con- 
tent for the Volume I are as follows: 

Section 2: Approach 

This section describes the methodology that is applied to the Task 3 test sequence. This 
sequence involves first identifying candidate technologies to fulfill the functional goals 
developed in Task 2. Next these technologies must be acquired or developed, depending 
on their availability. Then a sequence of tests must be designed to evaluate how well these 
technologies meet the individual functional goals. Finally these tests must be conducted 
and the results documented. 

Section 3: Lateral Countermeasure Sensing/Algorithm Tests 

As will be seen in the approach section, run-off-road countermeasures can be divided into 
two categories. The first category includes countermeasures designed to prevent roadway 
departure crashes caused primarily by a failure in lateral control. These crashes typically 
occur on straight or slightly curved sections of road, and are typically caused by driver 
inattention, driver incapacitation, and to some extent, lose of directional control. This sec- 
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tion describes technology with the potential to prevent these crashes, and the results of 
tests conducted to evaluate the performance of the technology. These tests focus on the 
sensing and decision algorithms for countermeasures designed to prevent laterally induced 
run-off-road crashes. Tests to evaluate the driver interface for these systems is described in 
Volume II of this report. 

Section 4: Longitudinal Countermeasure Sensing/Algorithm Tests 

The second category of run-off-road countermeasures includes systems designed to pre- 
vent roadway departure crashes caused primarily by a mistake in longitudinal control. In 
particular, these crashes often occur on curves, and are usually precipitated by excessive 
speed for the road geometry or pavement conditions. These includes crashes identified in 
Task 1 as being caused by excessive vehicle speed or lost directional control. This section 
describes technology with the potential to prevent these crashes, and the results of tests 
conducted on this technology to evaluate its performance. These tests focus on the sensing 
and decision algorithms for countermeasures designed to prevent longitudinally induced 
run-off-road crashes. Tests to evaluate the driver interface for these systems is described in 
Volume II of this report. 

Section 5: Summary and Conclusions 

A summary of the tests conducted for Task 3, and the results obtained is provided in this 
section. Implications of these results, and recommendations for further testing are also 
presented. 

3 



2.0 Approach 

The goal of Task 3 is to test existing technology with potential to prevent run-off-road crashes. 
The purpose of this testing is to determine limits, boundaries and capabilities of the technology, to 
assist in formulating performance requirements for run-off-road collision avoidance systems. 
There were four steps in the effort conducted for Task 3 of this program. They were: 

1. Identify technology to be tested 

2. Acquire/build technology 

3, Design tests of technology to evaluate performance 

4. Conduct and document tests 

The high level methodology associated with each of these four steps is addressed in the remainder 
of this section, The details of each step is provided in the following sections of the report. 

2.1 Identify technology to be tested 

In order to identify the hardware and software to be tested in this task, three factors were consid- 
ered: the functional goals for run-off-road countermeasures developed in task 2, the efforts being 
conducted by other related programs, and the availability of technology for testing. 

Of the three factors considered, the most important was the functional goals for run-off-road 
countermeasures developed in Task 2. These goals characterize the actions a run-off-road coun- 
termeasure must perform in order to be effective. The final set of 11 functional goals developed in 
Task 2 are: 

1. Monitor vehicle dynamic status 

2. Determine geometric characteristics of upcoming roadway segment 

3. Determine vehicle position/orientation relative to roadway 

4. Determine driver intention 

5. Detect degraded roadway conditions 

6. Process data to determine acceptable speed for upcoming roadway segment 

7. Detect potential for roadway departure 

8. Present phased alarm to driver 

9. Determine driver state 

10. Modulate driver control input 

11. Maintain/regain safe vehicle attitude 

As was discussed in the Task 2 report, only a subset of these functional goals would typically be 
required to prevent any particular run-off-road crash, or even any particular type of run-off-road 
crash. Taken together, these functional goals have the potential to eliminate a significant fraction 
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of the run-off-road crash population identified in Task 1. A block diagram depicting how these 
functional goals could be combined into an integrated run-off-road countermeasure system was 
presented in Figure 6- 1 of the Task 2 report, and is reproduced here as Figure 2- 1. 

Sensing 
Functions 

w--w 

Processing 
Functions 

------------- Y “““‘>” a--- 

lnteffece (Overt) Issue alert lo driver I 

Functions 4 

YU 

-l 

ria 
l 

Modulate drive& control input to 
aln safe vehicle altitude 

I 

Figure 2-1: Block diagram of run-off-road countermeasure functions 
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There are several important aspects of the block diagram in Figure 2-l. First, the functions per- 
formed by the integrated countermeasure can be divided into three categories: sensing functions, 
processing (or decision algorithm) functions, and driver interface functions. Within the sensing 
and processing functions, there are three parallel functional sequences each leading to the issue of 
an alert to the driver. 

The first of these parallel functional sequences involves detecting dangerous impairment of driver 
state, If the driver is drowsy, intoxicated, or in some other way impaired, this sequence is intended 
to detect the situation and trigger a sequence of driver interface functions to prevent a crash. This 
functional sequence is included in the block diagram for completeness, but to avoid duplication of 
effort with the ongoing NHTSA driver impairment detection program [23], driver impairment 
detection has not be the focus of the Task 3 efforts for this program, 

Instead the team’s efforts have focused on testing systems for the other two functional sequences, 
which are termed “longitudinal” and “lateral” sequences for the purposes of this report. In the lon- 
gitudinal sequence, the goal is to detect when the vehicle is traveling too fast for the upcoming 
roadway segment. The longitudinal sequence utilizes vehicle dynamic state and performance data 
in combination with information about the current pavement conditions and upcoming roadway 
geometry to determine the maximum safe speed for the vehicle. If the vehicle’s current velocity 
exceeds the safe speed, a sequence of driver interface functions is triggered to alert the driver of 
the danger and avoid a crash. The longitudinal functional sequence is designed to prevent those 
run-off-road crashes caused by excessive speed and lost directional control. 

The lateral functional sequence is designed to detect when the vehicle begins to depart the road. It 
utilizes data about the dynamic state of the vehicle, in combination with information about the 
geometry of the road ahead to determine if the vehicle’s current position and orientation will 
likely lead to a roadway departure. If the likelihood of departure exceeds a threshold, a sequence 
of driver interface functions is triggered to alert the driver of the danger and avoid a crash. The 
lateral functional sequence is designed to prevent those run-off-road crashes caused primarily by 
driver inattention and driver relinquishes steering control. 

It is important to note that two of the original six run-off-road crash causal factors identified in 
Task 1 are not addressed by these functional sequences. The first is crashes caused by evasive 
maneuvers in which the driver intentionally swerves to avoid an obstacle in the roadway, resulting 
in a roadway departure crash. As was indicated in the Task 1 and 2 reports, countermeasures for 
preventing this type of crash are currently being investigated in the NHTSA rear end collision 
countermeasures specifications program, being conducted by Frontier Engineering. Therefore, 
crashes caused by evasive maneuvers have been eliminated from consideration in the Task 3 
efforts for this program. 

The second crash type not addressed by the functional sequences in Figure 2-l are crashes caused 
by vehicle failures. These crashes typically result from tire blowouts or loss of power steering due 
to engine failure. The Task 1 analysis conducted from this program indicates that crashes from 
these causes are relatively rare (only 3.6 percent of the run-off-road crash population). In addition, 
countermeasures to prevent these crashes would require redesigning automotive components in a 
way that is beyond the scope of this program. For these reasons, crashes caused by vehicle failure 
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have been eliminated from consideration in Task 3. 

2.2 Acquire/Build Technology 

After identifying lateral and longitudinal run-off-road functions as the ones to be investigated, the 
next step in Task 3 was to acquire and/or build technology to perform these functions. The teams 
efforts to obtain technology for lateral and longitudinal countermeasures for testing will be dis- 
cussed in more detail in the subsequent sections. However it should be noted here that the tech- 
nology search conducted for this task was unable to identify any existing complete 
countermeasure systems for either lateral or longitudinal run-off-road crashes which were avail- 
able for testing. 

After consulting with NHTSA on this issue, it was decided the Task 3 efforts to obtain run-off- 
road countermeasure technology for testing would consist of three parts. First, the commercially 
available components which could form part of a run-off-road countermeasure would be acquired. 
Second, those components necessary for a run-off-road countermeasure, but not commercially 
available, would be developed by the project team within the resource constraints imposed by the 
program. Third, integration of the component technologies into complete countermeasure systems 
for both lateral and longitudinal countermeasures would be carried out by the project team, again 
within the resource constraints imposed by the program. 

2.3 Design Tests 

The test strategy developed for Task 3 included experiments to evaluate all aspects of the perfor- 
mance of the countermeasure technology, including performance of the sensing components, 
decision algorithms and driver interface. As is apparent from Figure 2- 1, the sensing and decision 
or processing functions are tightly coupled and hence much of the testing conducted for this task 
evaluated the combination of sensing and decision algorithms. The sensing and decision algo- 
rithm tests conducted for lateral countermeasures is described in Section 3. The sensing and deci- 
sion algorithm tests conducted for longitudinal countermeasures is described in Section 4. 

In contrast to the tightly coupled interaction between sensing and decision making functions, the 
driver interface functions are relatively independent. Once the decision is made by the counter- 
measure to trigger a response, the response can proceed with little input from the sensing and 
decision making functions. Because of this independence, and because of the need for carefully . 
controlled tests using naive subjects, it was decided to conduct the driver interface tests separately 
on the Iowa Driving Simulator (IDS). These simulator experiments were designed to investigate 
the relative performance of several combinations of audible and haptic feedback to the driver in 
order to prevent both lateral and longitudinal roadway departures. Details about these experiments 
and the results obtained are provided in Volume II of this report. 

2.4 Conduct and Document Tests 

The final step in Task 3 was to conduct and document the tests of run-off-road countermeasure 
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technologies. In conducting these tests there were three constraints which had to be met, requiring 
that tests be conducted in a variety of circumstances. 

The first constraint was that tests must be conducted in as realistic conditions as possible. This 
constraint required that a mobile testbed be developed to allow for in-vehicle data collection. The 
mobile testbed developed for this effort, called Navlab 5, is a Pontiac Transport minivan equipped 
with sensors and processing hardware for both lateral and longitudinal data collection experi- 
ments. The Navlab 5 is described in Appendix A. 

The second constraint was that tests be conducted to quantitatively characterize the performance 
of the countermeasure technologies. While much of this could be done by collecting data in the 
mobile testbed on normal roads, to achieve high levels of precision and repeatability required 
tests be conducted both in the laboratory and on restricted test tracks. The test facility utilized for 
some of these experiments was the track at the Vehicle Research and Test Center (VRTC) in East 
Liberty, Ohio. 

Finally, testing of the driver interface components of run-off-road countermeasures required 
experiments in which human subjects were exposed to near roadway departure situations. For 
obvious safety reasons, these tests could not be conducted in a real vehicle, so the University of 
Iowa driving simulator was utilized for the driver interface tests. 
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3.0 Lateral Countermeasure Sensing/Algorithm Tests 

In the Task 1 analysis conducted for this program, it was determined that a significant portion of 
single vehicle roadway departure crashes are caused by a failure of the driver to maintain proper 
lateral control of the vehicle. These crashes typically occur because of driver inattention (12.7 
percent) or because the driver relinquishes steering control (20.1 percent) due to drowsiness, 
intoxication or some other medical condition. The lateral countermeasures tested in Task 3 of this 
program were designed to address these types of crashes. Models of how effective these counter- 
measures would be at preventing or reducing the severity to these crash types are under develop- 
ment in Task 4 of the program, and will be investigated further in later program phases. 

This section is divided into 6 subsections. In 3.1, results from Task 1 are used to further character- 
izes the circumstances surrounding single vehicle roadway crashes that result from a failure of the 
driver to maintain lateral control. Section 3.2 outlines the functional goals a lateral countermea- 
sure should achieve in order to prevent or reduce the severity of these crashes. These functional 
goals are based on the results of the Task 2 analysis conducted for the program. Sections 3.3 
through 3.6 form the heart of this chapter. They describe the results of tests performed on technol- 
ogy to achieve the functional goals for a lateral countermeasure. Finally section 3.6 summarizes 
the results of the lateral countermeasure tests, and provides recommendations for further testing. 

3.1 Characteristics of Laterally Induced Crashes 

The clinical analysis of 200 NASS cases conducted as part of Task 1 provides a wealth of infor- 
mation characterizing the circumstances surrounding roadway departure crashes. For instance, 
approximately 75 percent of driver inattention or driver relinquishing steering control crashes 
involve the vehicle departing off the right edge of the roadway. This makes intuitive sense, due to 
the fact that on undivided roadways where the majority of SVRD crashes take place, an excursion 
towards the left, into the opposing lane, provides the driver with more time to recover when there 
is no opposing traffic. When there is opposing traffic, an excursion towards the left can result in a 
head-on crash, which is not considered part of the single vehicle roadway departure category. 

The roadway alignment in these crash situations varies substantially - 65.7 percent of SVRD 
crashes caused by driver inattention happen on curves, while only 37.5 percent of the crashes 
involving driver relinquishing steering control occur on curves. This can be explained by the fact 
that periods of inattention are typically quite brief, and therefore typically only result in crashes 
when precise steering maneuvers are critical, such as when negotiating a curve. The duration of 
steering failure on the part of the driver are presumably longer when the driver is incapacitated, 
and therefore many more SVRD crashes caused by the driver relinquishing steering control hap- 
pen on straight sections of road. 

Interestingly, the vast majority of both driver inattention crashes and driver relinquishes steering 
control crashes occur when there are no adverse weather conditions. For driver inattention 
crashes, 100 percent of the sampled NASS cases occurred under favorable weather conditions. 
For relinquishes control crashes the corresponding figure was 86.4 percent. 



The engineering analysis conducted for Task 1 indicates road departure angles in these crash cate- 
gories was relatively shallow, typified by the vehicle slowly drifting off the road. Despite the low 
departure angle in these situations, in only 10.5 percent of the crashes does the driver attempt a 
corrective action to avoid the crash while the vehicle is still on the road. 

Together these findings suggest that a countermeasure which can detect when the vehicle is about 
to depart from the road and triggers either a warning or some form of control intervention could 
potentially prevent many of these crashes. 

3.2 Functional Goals for Lateral Countermeasures 

In order to better specify the actions to be performed by a lateral roadway departure countermea- 
sure, a list of functional goals appropriate for preventing this type of crash was developed in Task 
2. These functional goals include: 

1. Monitor vehicle dynamic state 

2. Determine vehicle’s position/orientation relative to road 

3. Infer driver’s intentions 

4. Detect potential for roadway departure 

5. Present phased warning to driver 

The remainder of this section focuses on tests of technology for identifying situations in which 
substantial danger of laterally induced roadway departure crash exists. In doing so, this section 
focuses primarily on achieving goals 2 and 4. The analysis and assessment of technology for 
achieving goal 1, determining vehicle dynamic state, is addressed in Section 4.2 on longitudinal 
countermeasures, and in Appendix A. A discussion of Goal 3 is included in this section, although 
the project team could identify no available technology for accomplishing this goal, and so tests 
were not conducted. Tests of the driver interface for lateral departure countermeasures are pre- 
sented in the Volume II of this report. 

3.3 Goal 1: Monitor vehicle dynamic state 

The primary dynamic state variable required by a lateral countermeasure is vehicle velocity. The 
vehicle’s velocity is one of the principle factors determining the time available before a roadway 
departure. Technology for measuring vehicle speed was assessed in tests of the longitudinal coun- 
termeasure, which are discussed in detail in Section 4.2. For the purposes of a lateral countermea- 
sure, several technologies are available for measuring vehicle speed to the accuracy required. 
These include the vehicle’s speedometer, and the Doppler-based velocity estimates provide by 
Global Position Sensors (GPS). 

3.4 Goal 2: Determine Vehicle Position/Orientation Relative to Road 

The first challenging function a lateral countermeasure must perform is to sense the vehicle’s 
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position and orientation relative to the roadway. This sensing function could potentially be 
accomplished in a number of different ways. Technologies for monitoring the instantaneous lat- 
eral position of the vehicle can be divided into infrastructure-based technologies, which require 
modifications to the roadway, and vehicle-based technologies which rely on existing roadway 
characteristics and in-vehicle processing. 

3.4.1 Infrastructure-based Lateral Position Detection Systems 

Infrastructure-based lateral position detection systems typically exploit ferromagnetic markers 
(usually wires or magnets) buried in the pavement. In-vehicle sensors detect these signals and use 
their intensity to calculate lateral position. One of the most advanced system of this type has been 
developed and tested by the California PATH group (a consortium of Universities and the Califor- 
nia Department of Transportation). Statistics provided by the PATH team indicate that by using 
magnets buried at one meter intervals on their Berkeley test track, they can achieve lateral posi- 
tion estimation accuracy on ‘the order of several centimeters under a variety of conditions [3 11. 

While this technology is capable of impressive lateral positioning accuracy, there are several tech- 
nical drawbacks that limit its deployability. One technical shortcoming of ferromagnetic detection 
systems is that they have difficulty when other metal is embedded in the roadway, for instance on 
bridge decks. A more limiting shortcoming of these systems is the logistical difficulty of deploy- 
ment and maintenance. To be an effective countermeasure;a lateral position detection system 
must work on rural roadways, since the Task 1 analysis conducted for this program indicates that 
over 2/3rds of all roadway departure crashes occur on rural roads. The cost of deploying and 
maintaining the embedded markers on all of the nations 4 million miles of rural roadways would 
be prohibitively expensive, particularly in northern areas of the country where the markers would 
most likely result in increased pothole formation. This drawback is such a concern that we have 
been told by a representative of the Minnesota Department of Transportation that they will not 
even consider countermeasures which require embedding markers in the pavement [4]. 

An alternative ferromagnetic lateral position estimation system currently under development by 
3M Corporation [ 161 relies on magnetic tape which can be stuck onto the road surface or pressed 
into the pavement during construction. While not available for testing in Task 3, this technology 
warrants further evaluation since it has the potential to provide high reliability lateral position 
estimates with fewer deployment difficulties then buried wires or magnets. 

3.4.2 Lateral Position Detection Systems without Forward Preview 

An alternative to infrastructure-based systems for lateral position detection are systems mounted 
on the vehicle which sense characteristics of existing roadways. These systems often use down- 
ward-looking video or infrared sensors to detect the position of the road’s lane markings. The 
project team identified two such systems for testing in Task 3. 
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3.4.2.1 Laser-based Downward-looking Lateral Positioning Systems 

The first downward-looking system identified by the team was an infrared-based system devel- 
oped by Aerometrics Inc. under NHTSA sponsorship. The Aerometrics sensor uses a scanning 
infrared laser pointed down at the road, mounted behind the front license plate. The laser scans 
nearly 180 degrees laterally across the roadway. Detectors within the device sense the intensity of 
laser light being reflected back to the sensor from the road surface. The concrete or asphalt 
reflects little of this laser light back to the detector. However the lane markers reflect large quanti- 
ties of laser light back to the detector, because the lane marker paint has retroreflective glass beads 
embedded within it to increase visibility at night. This difference in returning laser light is used to 
locate the lane markers, and to estimate lateral position. The Aerometrics system provides lateral 
position estimates at a rate of 200-400 hz [32]. 

Tests performed by Aerometrics in the parking lot of their facility indicate the system is able to 
estimate lateral position to within one centimeter, even under wet pavement conditions. The 
project team had planned to perform additional tests to determine the sensitivity of the Aeromet- 
rics sensor to the condition of the lane markings. Unfortunately, due to fabrication and personnel 
difficulties, Aerometrics was unable to provide a unit for testing as part of Task 3. 

3.4.2.2 Vision-based Downward-looking Lateral Positioning Systems 

An alternative downward-looking lateral position detection system is the AURORA system 
developed at Carnegie Mellon University. Instead of a laser, this system uses a downward-looking 
video camera to detect both white and yellow lane markings. This section describes the 
AURORA system and the results of tests conducted by the project team to evaluate its perfor- 
mance. More details about the AURORA system are also provided in [4]. 

3.4.2.2.1 AURORA Sensor Configuration 

AURORA employs a downward-looking video camera to detect lane markers alongside the vehi- 
cle. A color camera is mounted on the side of a car, pointed downwards toward the road; this 
enables AURORA to view an area of the road approximately 1.6m by 1.5m next to the vehicle 
(See Figure 3-l). The video output of the camera is captured by a digitizer and processed using a 
portable Sun Spare workstation. AURORA processes both fields of every frame provided by the 
digitizer (a full NTSC image frame has odd and even rows which are scanned separately, resulting 
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in two video fields), giving it a processing rate of 60Hz. 

Figure 3-1: Downward looking roadway departure warning system 

3.4.2.2.2 AURORA Processing Algorithm 

AURORA relies on detection of painted lane markings to determine the vehicle’s lateral position. 
There are two common types of lane markers: double yellow lines (separating lanes of traffic trav- 
elling in opposite directions), and single dashed white lines (separating lanes of traffic travelling 
in the same direction). After a simple initial camera calibration, the system is able to estimate the 
vehicle’s lateral position accurately using either type of lane marker. Figure 3-2 is a typical image 
taken by AURORA’s camera. From this single image, AURORA outputs whether a lane marker is 
present in this field, plus the distance between the vehicle and the lane marker if one is present. 

sh 

I i 

adow of the camera 

shadow of the car 

lane marker 

the road 

Figure 3-2: A typical image of a lane marker on the road 

To accommodate the real-time requirement of roadway departure warning, AURORA processes 
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only a single scanline of each video field using a hinormalized adjustable template correlation 
technique. We choose the central row scanline of each image purely for display convenience. For 
a symmetric neighborhood around each point along the scanline, we compute the resemblance of 
this neighborhood to a lane marker template. If the resemblance of the best neighborhood is above 
a threshold, the point under examination is defined as the position of the lane marker. If there are 
no neighborhoods satisfying this threshold test, AURORA indicates that there is no lane marker 
in the image. 

intensity profile 

scanline 

Figure 3-3: Real image with overlay of the scanline intensity profile 

3.4.2.2.2.1 AURORA Adjustable Template Correlation 

A typical scanline and its corresponding intensity profile superimposed on the image are shown in 
Figure 3-3. AURORA models a lane marker as having an intensity profile as shown in Figure 3-4, 
with a uniform intensity ImXl;Lr distinct from the intensity of the road I,,. 

Unfortunately, real lane markers on roads differ substantially from this simple template. They typ- 
ically are not solid lines: their edges are often obscured, and they are often faded and worn due to 
traffic and weather. Moreover, the pavement itself is neither uniform nor clean. The roadway often 
contains small patches of white paint, or even faint older lane markers overlapped with newly 
painted ones. Furthermore, different lighting and weather conditions or shadows on the road will 
make the lane markers appear different from one another. 

Because of these imperfections, a fixed template is not sufficient to model real lane markers; an 
adjustable template is necessary. AURORA’s initial approach was to dynamically update the tem- 
plate based on recent road conditions. For instance, it adapted the marker intensity Imurlirr to match 
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Figure 3-4: Basic shape of the template used for correlation in lane marker tracking 

that of recently detected lane markers, and adapted the road intensity Iroad according to the road 
condition in the previous images. While this method worked well for slowly-varying roads, the 
system was easily confused by sudden changes in the road surface, such as changing from old 
pavement to new pavement. Since the template was updated each time AURORA finds a lane 
marker, this method was vulnerable to severe error propagation. For example, if a noisy patch of 
the road was incorrectly labelled as a lane marker, the template would have adapted according to 
the erroneous Imarker and Iroad. This could completely corrupt the template, and make automatic 
recovery very difficult. 

Since previous images may not be accurate predictors of current conditions, AURORA uses an 
adjustable template method which focuses on the current image. The overall shape of the adjust- 
able template remains fixed (like in Figure 3-4), but now Imarker and I,, are functions of the posi- 
tion along the scanline. At each point under examination, AURORA projects the template outline 
symmetrically onto its neighborhood. Then it adjusts I,,,and Iroad to the average of the intensi- 
ties of scanline pixels in the corresponding region of the template, as shown in Figure 3-5. 

The equation below shows the process of computing Imarker and Iroad in detail. Iscanline represents the 
intensity of points on the scanline. RmXke, and Rroad are the marker region and road region on the 
scanline correspond to the template regions respectively. 

Z 1 =-. 
marker N c Z scanjine(i)9 Nm is size Of Rmarker 

m i E Rmarker@) 

Z 1 =-. 
road N c Z scanline( Nr is size of Rroad 

r i E Rroad(Pl 

The adjustable template will resemble a dual step function only when it is applied to the area 
around the true lane marker, as shown at point 2 in Figure 3-6. In uniform parts of the image away 
from the scanline, the adjustable template will appear as a straight line, as shown at point 1 in Fig- 
ure 3-6. 
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Figure 3-5: Adjustable template 
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Figure 3-6: Illustration of the adjustable template as a function of pixel position 

Binomzalized correlation is applied to locate the part of the scanline which most closely resem- 
bles a lane marker. First the sum of the absolute difference between the scanline intensity Iscanline 
and the corresponding template value is averaged. Then this result is divided by the difference 
between the Imarker and Iroad of the template, as is shown in following equation. 

c I Z scanline(i)-zmarkerl ’ c Izscanline(i)-zroadl 
ie R 

Error = marker i E Rraad \ 

Nm ’ Nr ’ ‘marker- ‘road 

This division by the contrast between the marker and road regions penalizes uniform regions of 
the scanline, where the adapted template might otherwise match quite closely, and favors high 
contrast areas typical of lane markers. To further ensure that lane markers are not detected in uni- 
form regions, a minimum contrast between Imarker and Iroad is enforced. If the contrast is below this 
lower bound after template adjustment, the section of the scanline surrounding the examined 
point is considered not to contain a lane marker. If the error in the above equation is below a 
threshold, AURORA judges that there is a lane marker in the image. Figure 3-7 shows the relation 
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Figure 3-7: Scanline intensity protile, contrast, and match error 
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of the intensity profile of a scanline, the contrast between Imarker and Iroad for each point along this 
scanline, and the corresponding binormalized correlation error. Note that the error achieves mini- 
mum at the center of the lane marker where the contrast reaches a maximum. 

The above method still did not always perform satisfactorily because lane markers in the real 
world typically do not have clean step edges at both sides. Instead, the edges may be blurry, which 
can cause a large correlation error. AURORA overcomes this problem by ignoring the sections of 
the scanline around the edges of the lane marker; it only uses the more reliable data away from the 
marker edges to adjust the template and compute the binormalized correlation, as shown in Fig- 
ure 3-8. This technique is similar to that employed by the SCARF road following system [6] to 
detect the boundary between the road and non-road regions on unstructured roads. Ignoring these 
regions of the template also makes the algorithm more tolerant to variations in the width of the 
lane marker. One potential problem with this procedure is that it may result in reduced lane 
marker localization accuracy. However experiments showed that this accuracy is well preserved. 

step edge template 

areas which account for large part 
of absolute correlation error 

template with gaps 

areas which wk ignore during 
correlation to reduce error 

Figure 3-8: Comparison of step edge template and the template with gaps 

3.4.2.2.2.2 AURORA Local Search Strategy 

Since vehicles typically travel at speeds greater than 25 m/set on the highway, it is imperative that 
AURORA operate in real time. AURORA achieves its 60 Hz cycle rate by processing only a sin- 
gle scanline per image. Its efficiency is further improved by first searching in the vicinity of last 
detected marker position. This also helps to avoid confusion caused by spurious features on the 
road. The local search range in AURORA is twice the size of the template’s marker region Rmarker 
If the lane marker is within this local search range, it can be detected with less effort than search- 
ing through the entire scanline. If AURORA cannot find a lane marker within the local search 
range because it lies outside the local search range or because there is no lane marker in this 
image, the system extends the search to the whole scanline. 
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3.4.2.2.2.3 AURORA Sensor Calibration 

Since AURORA uses a relatively wide angle lens (54 degrees) to see a large area next to the vehi- 
cle, perspective effects and lens radial distortion are significant. Because of these effects, the 
width of a lane marker can vary significantly depending on its position in the image. To handle 
these variations a calibration procedure is performed in order to determine the marker width to 
expect at each point along the scanline. 

The calibration procedure for AURORA involves the positioning of calibration marks at known 
distances from the vehicle in the camera’s field of view, as shown in Figure 3-9. Typically these 
marks are placed IOcm apart, The user then manually indicates the columns in the image at which 
these marks appear. By relating distance between marks on the ground to the number of columns 
between them in the image, the system then computes a scale factor to convert centimeters to pix- 
els for each column in the image. This scale factor is then used to precompute how wide (in pix- 
els) a typical lane marker should appear when centered at each column of the image. The size of 
the marker region RmWltcF is then adjusted at run-time according to the position in the scanline cur- 
rently being searched, to compensate for perspective and lens distortion effects. This calibration is 
also vital for vehicle lateral displacement estimation, in order to translate a lane marker position 
in pixels into a distance measurement. A deployed countermeasure based on AURORA would 
utilize a fixed camera at a known location and orientation, so this calibration procedure would be 
unnecessary. 

vehicle mounted camera 

calibration str 

Camera calibration illustration The calibration image 

Figure 3-Y: Camera calibration using marks evenly spaced at known intervals 

3.4.2.2.2.4 AURORA Lateral Position Estimation 

Once AURORA locates the lane marker, the next step is to calculate the vehicle’s lateral position. 
The same technique used to compensate the marker width for perspective effect and lens distor- 

19 



tion is used to compute the vehicle’s distance from the edge of the lane. Specifically, the apptoxi- 
mate lateral position of the vehicle is determined by comparing the location of the detected lane 
marker with the locations of the known calibration marks. Linear interpolation is used to deter- 
mine the precise location of lane markers falling between the positions of two calibration marks. 
Since the calibration marks are closely spaced, this linear interpolation does not introduce signifi- 
cant error, as will be shown in the next section. AURORA defines the distance between the center 
of the vehicle and the center of the lane as the vehicle lateral position. This can be directly com- 
puted from the distance between the vehicle and the lane marker as long as the widths of the lane 
and vehicle are known. 

3.4.2.2.3 AURORA Performance 

Extensive tests of AURORA were performed by the project team under a variety of weather and 
lighting conditions on a variety of road types. These conditions included sunny, cloudy, rainy and 
snowy days, as well as both day and night operation. Test were conducted on both two lane rural 
roads and divided highways. Tests were performed in the laboratory using road sequences col- 
lected on videotape, as well as on the Navlab 5 test vehicle. 

Overall, test results were quite promising. AURORA is able to reliably track both dashed and 
continuous white and yellow lane markers. Quantitatively, on roads with dashed white lane mark- 
ers, the system misses, on average, about I in every 100 lane markers, usually when the marker is 
severely faded or obscured. This type of mistake normally occurs on a single lane marker, and 

9 does not propagate to subsequent markers since the system only relies on the current image for its 
processing. Figure 3-10 is the display on the monitor once AURORA has detected a white lane 
marker. 

adjustable template 

real lane marke 
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Figure 3-10: Display on the monitor once a lane marker is detected 

While we have been using white lane markers in the previous examples, AURORA in fact works 
equally well for double yellow lane marker. The only differences in the algorithm are that 
AURORA uses color information rather than simple intensity in the template, and the template 
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has a different shape, as is shown in Figure 3-I I. Instead of using the summation of red (R), green 
(G) and blue (B) pixel values as intensity for each pixel, AURORA uses R+G-2B as a simple 
means of highlighting pixels with a yellow hue in the image. A typical result of detecting double 
yellow lane marker is shown in Figure 3- 12. 

A marker width 

s A 
2 

.z 

’ marker color value 

road color value 

. 
f b 

pixels 

Figure 3-11: Template for double yellow lane marker 

Figure 3-12: Display on the monitor once a double lane marker is detected 

AURORA’s lateral position estimation accuracy was measured by comparing the result given by 
the system and manual measurement. Table 3-l shows the comparison of I4 randomly selected 
lane markers lying at different positions on the road. The average absolute error is 0.8 cm.The 
standard deviation of the error in position estimation is I .OScm. 
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Table 3-1: Lateral displacement estimates from Aurora and manual measurement 

&-or -0.5 -1.6 -1.5 -2.5 1.2 -0.4 0.0 1.0 0.1 -0.3 0.3 1.1 0.3 0.7 

Figure 3-13 shows a plot of AURORA’s estimate of the vehicle’s lateral displacement from the 
road center over time as the driver drifts from one side of the lane to the other. Note the smooth- 
ness of AURORA’s lateral displacement estimates. Also note that the vehicle’s trajectory can be 
characterized as periods of relatively constant velocity lateral drift, punctuated by abrupt correc- 
tive maneuvers. Flat regions indicate that marker has left the sensor’s field of view. . 

-100.0 1 I I I I I I I 

0.0 5.0 10.0 15.0 
Time (s) 

Figure 3-13: AURORA’s estimate of lateral displacement over time 

In general AURORA’s position estimation accuracy did not degrade with adverse weather and 
lighting conditions. Neither wet pavement nor a thin snow cover degraded performance signifi- 
cantly. However once the snow became thick enough to entirely obscure the lane markings, 
AURORA’s accuracy fell to zero. AURORA’s performance was not impaired by nighttime opera- 
tion, although it did require active illumination of the pavement, in the form of a 100 watt lamp 
mounted next to the camera, in order to consistently track lane markers. The harsh shadow cast by 
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the vehicle on very sunny days occasionally proved difficult for AURORA. Under these condi- 
tions, the limited dynamic range of the camera resulting in either the shadowed region being very 
dark or the sunny region being extremely bright. When the lane marker transitioned between 
these two regions, AURORA would sometimes loose track of it. A camera with a larger dynamic 
range would be necessary for truly robust operation. 

It was also clear from the tests performed on AURORA that tracking both left and right lane 
markers is necessary for reliable operation. In order to compute the vehicle’s lateral position, it is 
necessary that a system know the lane width. With a single camera tracking the left lane marker, 
this is impossible to compute. In addition, on very wide roads (> 4.5m), the left lane marker 
would sometimes move out of AURORA’s visual field while the vehicle was still in its lane, mak- 
ing it impossible to accurately compute the vehicle’s lateral position. A wider field of view cam- 
era would reduce this effect, but would reduce AURORA’s accuracy. A second camera tracking 
the right lane marker would solve these problems, and also provide a redundant source of infor- 
mation when lane markings are obscured or degraded. 

A final drawback of downward-looking lateral position detection systems like AURORA discov- 
ered in these tests is that they are unable to detect roadway departure danger until the vehicle 
begins to stray from the road center. This could be problematic, since the Task 1 analysis indicates 
that approximately 66 percent of inattention related roadway departure crashes occur on curves, 
where large road curvatures coupled with obstacles like guardrails close by on the roadside, leave 
little time between the start of lane excursion and impact. The effectiveness of countermeasures 
which utilize downward-looking lateral position sensing will be carefully modeled in Task 4 to 
determine the significance of this effect. One approach to overcoming the lack of forward preview 
in downward-looking lateral position detection systems is to combine them with a digital map. 
This would allow the countermeasure to have at least approximate knowledge of the road geome- 
try ahead. The team recommends investigating this combination of technologies in Phase II. As 
an alternative, the project team investigated a category of lateral position detection systems 
designed to overcome this problem: lateral position detection systems with forward preview. 

3.4.3 Lateral Position Detection Systems with Forward Preview 

Lateral position detection systems with forward preview are typically video-based, with a forward 
looking camera to detect both the current lateral position of the vehicle, and the geometry of the 
road ahead of the vehicle. These are by far the most actively studied type of sensing technology 
for single vehicle roadway departures. A partial list of references to efforts in this area include [6] 
[7][12][20][21][22][24][25][26][27][33][35]. As part of the technology identification effort con- 
ducted for Task 3, the project team identified more than 10 groups which have been or are 
involved in the development of forward looking lateral position detection systems including: 

. General Motors 

l Ford Motor Company (Jaguar Division) 

l Daimler-Benz 

l The National Institute of Standards and Technology (NIST) 
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l Helsinki University 

l Rockwell International 

l University of Maryland 

l Carnegie Mellon University 

l IMRA America 

l Toyota 

l Tokyo University 

Contact was made with each of these organization to determine whether they had technology 
which could be tested as part of this program. Unfortunately, the responses received from these 
organizations regarding the status of their efforts, and the potential for testing their technology, 
was been negative for all but two of these sources. The responses received can be divided into 
four categories: 

Discontinued: The effort is no longer being pursued 

Proprietary: If a system is being developed, information about it is confidential 

One-of-a-kind: The system uses expensive (more than \$300K custom equipment 
i and the prototype system that exists is unavaila le for testing 

Not Mature In the o inion of the developer, the system is not yet ready for 
external esting P 

The responses from each of the developers listed above are categorized into one or more of these 
four categories in Table 3-2. 

Table 3-2: Status of forward-looking lateral position systems 

Helsinki U. X 

U. of Maryland X X 

IMRA America X X 

Toyota X X 

Tokyo U. X 

The remaining two developers, Rockwell International and Carnegie Mellon University, have 
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technology ready for testing by NHTSA. The Rockwell system uses a forward looking video 
camera and a special image processing chip to detect the lane markings on the road ahead of the 
vehicle. Rockwell is under contract with NHTSA to refine the system, and evaluate its perfor- 
mance. After consultation with both Rockwell and NHTSA personnel involved with this project, 
its was decided not to test the Rockwell system as part of Task 3. The reasons for this decision 
were: 1) the Rockwell system is still undergoing refinement, for example to determine the optimal 
sensor placement, and 2) Rockwell will be conducting controlled tests of their system as part of 
their NHTSA program. 

Two forward-looking lateral position detection systems developed at Carnegie Mellon University 
were tested as part of Task 3. The two systems, called ALVINN and RALPH, utilize a forward- 
looking video camera to determine the vehicle’s position on the roadway, and the geometry of the 
road ahead. These sensing systems themselves, and experiments conducted to evaluate them, will 
be presented in the next two sections. 

3.4.3.1 ALVINN 

The ALVINN (Autonomous Land Vehicle In a Neural Network) system is a neural network-based 
lateral position detection system. ALVINN uses connectionist image processing techniques to 
detect the location of the road ahead. It learns which image features are important for detecting 
the road by watching as a person drives. ALVINN was developed under sponsorship from the 
Advanced Research Projects Agency (ARPA) of the US Department of Defense. ALVINN was 
originally designed to act as the navigation system for unmanned battlefield scout vehicles. How- 
ever, its ability to accurate determine the position of the road ahead makes it a good candidate 
sensing system for a roadway departure countermeasure. 

3.4.3.1.1 ALVINN Sensor Configuration 

ALVINN uses a single color video camera mounted next to the rear view mirror looking forward 
through the windshield at the road ahead. A typical image as seen from ALVINN’s camera is 
shown in Figure 3-14. There are several things to note about the images processed by ALVINN. 
First, ALVINN does not process the entire image, but only the region within the rectangle in Fig- 
ure 3-14. This is done to eliminate parts of the image that are above the horizon, or parts that rep- 
resent the dashboard of the vehicle. ALVINN subsamples this rectangular region to create a low 
resolution image, shown in the lower left corner of Figure 3-14. It is this low resolution 30x32 
pixel image that is processed by ALVINN to determine the vehicle’s position and the geometry of 
the road ahead. 
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Figure 3-14: ALVINN camera view and preprocessed image 

3.4.3.1.2 ALVINN Processing Algorithm 

ALVINN uses an artificial neural network to process the image of the road ahead. The network is 
a multi-layer perceptron with three layers of neurons or “units”, as shown in Figure 3-15.The 
input layer consists of a single 30x32 unit “retina” onto which a video image is projected. Each of 
the 960 input units is fully connected to the four unit hidden layer, which is in turn fully connected 
to the output layer. Each of the 30 output units represents a different possible steering direction to 
keep the vehicle on the road. The centermost output unit represents the “travel straight ahead” 
condition, while units to the left and right of center represent successively sharper left and right 
turns. 

To determine the arc the driver should currently be following in order to stay on the road, an 
image from the video camera is reduced to 30x32 pixels and projected onto the input layer. After 
propagating activation through the network, the output layer’s activation profile is translated into 
the optimal steering arc to follow. The steering arc recommended by the network is taken to be the 
center of mass of the “hill” of activation surrounding the output unit with the highest activation 
level. Using the center of mass of activation instead of the most active output unit to determine 
the optimal steering direction permits ALVINN to more accurately identify the correct direction 
to steer. Note that this approach combines the vehicle’s lateral position in its lane with the geome- 
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try of the road ahead into a single indicator of how the driver should be steering. This is different 
from other forward-looking lateral position estimation systems, such as the RALPH system to be 
discussed in the next section, which maintain,these two pieces of information separately. The 
implications of this processing strategy for a run-off-road countermeasure will be discussed in 
section 3.6 on decision algorithms for roadway departure warning, 

Straight Sharp 
Ahead Right 

Figure 3-15: ALVINN neural network architecture 

Unlike most other lateral position sensing systems, ALVINN is not programmed to detect particu- 
lar features such a lane markings. Instead, the artificial neural network at the heart of ALVINN 
learns which steering arc is appropriate for a particular scene. The network is taught to imitate the 
steering response of a human driver. As a person drives, the network is trained with the back- 
propagation algorithm using the latest video image as input and the person’s steering direction as 
the desired output. 

To facilitate generalization to new situations, variety is added to the training set by shifting and 
rotating the original camera image in software to make it appear that the vehicle is situated differ- 
ently relative to the road ahead. This image transformation scheme is depicted graphically in Fig- 
ure 3-16. The correct steering direction for each of these transformed images is created by altering 
the person’s steering direction for the original image to account for the altered vehicle placement. 
So for instance, if the person were steering straight ahead, and the image were transformed to 
make it appear the vehicle is off to the right side of the road, the correct steering direction for this 
new image would be to steer towards the left in order to bring the vehicle back to the road center. 
Adding these transformed patterns to the training.set teaches the network how to respond when 
the driver has made a steering mistake, without requiring the human trainer to explicitly stray 
from the road center and then return. 

To train ALVINN on a new road type requires the system to observe a person’s steering reactions 
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during approximately two minutes of driving. At the end of this training period, ALVINN is ready 
to begin recommending steering directions, which can be compared with the driver’s actual steer- 
ing direction to determine the danger of roadway departure. More details of the algorithm 
ALVINN used to identify run-off-road situations will be provided in Section 3.6 on decision algo- 
rithms and in Volume II in the experiments on driver interfaces. For a more detailed description of 
the ALVINN processing algorithm, See [ 181. 

Shifted and Rotated Images 

Figure 3-16: ALVINN image transformation scheme 

3.4.3.1.3 ALVINN Performance 

An extremely important component of sensor processing performance is their ability to cope with 
degraded environmental conditions. This factor is particularly important for forward-looking 
video-based systems such as ALVINN, which must process images containing a wide variety of 
degraded conditions in order to perform reliably. Most of the tests of the ALVINN system con- 
ducted for Task 3 focused on quantifying the effects of degraded environmental conditions on 
sensor performance. 

In order for any sensing system, including ALVINN, to effectively detect the location of the road 
ahead there must be sufficient contrast in the sensor input between the features delineating the 
road and the non-road parts of the scene. These features may include lane markings, boundaries 
between the road and the non-road regions, or even pavement anomalies such as oil spots down 
the lane center. The contrast presented by these features depends on a number of factors, includ- 
ing the material properties of the road and background, lighting and atmospheric conditions, and 
sensor performance characteristics. Poor weather and visibility conditions degrade the apparent 
contrast seen by the sensor and reduce the available information for subsequent processing algo- 
rithms. The contrast required to effectively locate the road ahead depends heavily on the process- 
ing algorithm utilized. As an adaptive system able to modify its processing to suit the conditions 
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at hand, it was expected that the ALVINN processing algorithm might be reasonably tolerant of 
adverse environmental conditions. However as the level of adverse ambient conditions becomes 
more intense, it is expected that any lateral position detection algorithm will become increasingly 
less accurate. 

Developing a quantitative model for the effects of adverse environmental conditions for a lateral 
position estimation system such as ALVINN is challenging, both because it is impossible to dic- 
tate particular ambient conditions (e.g. 7mm/hr rain rate with one mile visibility fog) and because 
it is difficult to accurately quantify the conditions that do occur. In order to overcome these diffi- 
culties, the project team conducted controlled laboratory experiments to quantify the effects of 
environmental conditions on ALVINN. These experiments consisted of four parts: 

1. Camera calibration 

2. Image data collection 

3. Controlled image degradation 

4. ALVINN performance testing 

Each of these parts will be discussed individually in the next four sections. 

3.4.3.1.3.1 Camera Calibration 

The effect ambient weather and lighting conditions will have on system performance depends 
heavily on the characteristics of the sensor the system employs. In order to determine the response 
characteristics of the video camera ALVINN uses, a series of tests were conducted on ALVINN’s 
Sony XC-711 CCD color camera with Computar MlOZ-1118AMS zoom lens. In order to obtain 
baseline measurements of signal transfer and noise characteristics, the camera’s gamma correc- 
tion function and electronic shutter were switched off. The camera’s automatic gain control 
(AGC) function was turned on, with an offset of OdB. The signal transfer characteristics were 
tested using a greyscale chart, a light box, a monitor and an oscilloscope. The noise levels on the 
three camera output channels (red, green, blue) were also measured using the oscilloscope. 

The output waveforms of the red, green and blue channels were recorded to obtain the signal 
transfer curves at various scene luminance levels and to characterize the AGC of the camera sys- 
tem. At high scene luminance levels, the camera’s AGC reduces the signal transfer curve to pre- 
vent signal saturation. When the brightest scene luminance levels are reduced, the AGC attempts 
to increase the signal transfer curve to fully utilize its dynamic range. Graphs of the signal transfer 
curves are included in Appendix B. 

3.4.3.1.3.2 Image Data Collection 

The next step in quantifying the effects of environmental conditions of system performance was 
to collect several sets of road scene imagery. The team’s camera equipped testbed vehicle was 
used to collect sequences of color images comprised of sections of multi-lane divided highway, a 
two-lane country road without lane markings, and a country road with a yellow centerline. Each 
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image was tagged with the radius of curvature steered by the driver at the moment the image was 
captured. The driver’s radius of curvature was later used as the “optimal”, or desired, response 
output from the ALVINN image processing system during training and testing on simulated 
weather-degraded versions of the images. 

To accurately simulate the effects of weather degradation on these sets of images required that 
careful measurements be taken to characterize the conditions under which the images were col- 
lected. The team utilized radiometric measurement equipment to quantify the following environ- 
mental and system characteristics: 

l terrain spectral radiance (for concrete, grass, asphalt, line markings) 

,* solar spectral radiance 

. spot meter readings of road and grass 

l camera geometry and field of view (FOV) 

l frame grabber dark level and saturation level 

From these ground truth measurements, the team derived the following parameters: 

l terrain spectral reflectivities 

l digitization correction factors 

. scene-viewing geometry effects 

. a conversion factor for terrain radiance to digital values 

The weather for the data collection episode was mostly clear with only occasional clouds. Most of 
the highway scenes were imaged in bright sunlight, although some of the frames were taken with 
the sun behind the clouds. The highway imagery contained some shadows from bridges and other 
vehicles. The country road images contained segments with and without shadows from trees. 

During data collection, the autoiris on the Sony XC-7 11 camera was disconnected and the AGC 
was on. This set up can accommodate several orders of magnitude in ambient irradiance levels. 
No image stabilization was implemented while recording the imagery, since ALVINN does not 
utilize a stabilized camera. 

3.4.3.1.3.3 Controlled Image Degradation 

Given the above image sets collected under benign, well characterized conditions, the next step 
was to digitally degrade these images to simulate adverse environmental effects. To accomplish 
this step the team utilized several tools developed previously by Battelle for analyzing and simu- 
lating battlefield sensor data. These tools include the Tactical Decision Aids (TDAs) and Electro- 
Optical Visualization and Simulation Tool (EOVAST). 
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The TDAs are automated analysis tools designed to predict the .performance of electro-optical, 
precision guided munitions and target acquisition systems as a function of target engagement 
geometry and environmental conditions. The TDAs have been successfully employed to predict 
maximum sensor performance (in terms of maximum detection, recognition, identification, lock- 
on, and launch ranges) in support of Desert Storm/Desert Shield, the El Dorado Canyon Mission, 
and operational flight tests. TDAs have been developed for long-wave and middle-wave infrared 
sensors, passive daylight and low-light-level television cameras, active (laser-illuminated) televi- 
sion systems, 1.06m nonimaging laser receivers/designators, direct view devices (telescopes, bin- 
oculars, etc.) and night vision goggles. The TDA models implement system-level and detailed 
component-level EO/IR models and have been extensively validated. 

Electra-Optical Visualization and Simulation Tool (EOVAST), originally developed for military 
targeting applications, generates and displays images as they would appear to a combat crew dur- 
ing an actual mission, considering the sensor system and environmental conditions. EOVAST’s 
predicted images incorporate faceted representations of targets, predicted radiometric target and 
background signatures generated by a thermal signature model, the degradation in contrast due to 
atmospheric attenuation for the modeled environment, and blurring effects for the implemented 
sensor system. EOVAST performs all of this rapidly; no fractals are used. The software has been 
designed to execute on a Sun SPARCstation using the X-Windows environment, yet can be 
readily tailored for operating on any host system. 

The TDA and EOVAST software tools, originally developed for tactical military applications, are 
also suited for electro-optical sensor system analyses regarding ITS applications and were accord- 
ingly applied to the roadway departure modeling effort. The TDALEOVAST analysis process 
employed for this effort utilized the images described above of actual road scenes collected under 
clear conditions. The effects of adverse weather and poor visibility conditions were introduced 
into the frames using the TDA/EOVAST software to generate simulated images with degraded 
contrast. Weather and illumination variables affecting sensor performance include visibility, 
degree of overcast, time of day and rain rate. Illumination is a derived parameter comprised of the 
overcast condition and time of day factors. 

Prior to operating the TDA/EOVAST software on the road scene images, The team ran the 
MODTRAN software package to calculate radiance and atmospheric transmission parameters 
required as inputs to the TDA/EOVAST software. Inputs to MODTRAN consist of environmental 
factors and the imaging scenario geometry including sun angle (azimuth and elevation), sensor 
look angle, atmospheric aerosol content (i.e., fog levels), aerosol scattering phase function (i.e., 
Mie or Henyey-Greenstein) and standard atmosphere type and profile. The U.S. Standard Atmo- 
sphere was selected with its accompanying temperature, pressure, humidity and other climatolog- 
ical parameters. MODTRAN was run over the spectral range of 300 nm through 1. lm to cover the 
performance realm of CCD camera operation. The sun angle parameter was set to zenith (directly 
overhead). MODTRAN outputs included calculated solar spectral irradiance (W/m2-m), path scat- 
tered radiance (W/m2-sr) and atmospheric transmission (unitless). 

Employing the atmospheric parameters calculated by MODTRAN, the TDA/EOVAST software 
was used to process the road scene frames and generate artificially degraded images under differ- 
ent weather conditions. The software applied to this effort consisted of a new module developed 
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by the team to tailor the TDAIEOVAST routines for processing road scene imagery. 

The image data sets generated using this soft&@incltided 30 images from each of the three road 
types, degraded to represent visibility conditions of 700m, 300m and 100m. Note that by defmi- 
tion, the term “visibility” refers to the horizontal distance for which the contrast transmission of 
the atmosphere in daylight is two percent. The degraded images modeled the atmospheric effects 
of transmission loss and the addition of path radiance. These model effects are range dependent 
and were correctly simulated across the entire scene field of view. Together with the original 
images for each road type, estimated to have a visibility of approximately lOOOm, the image,data- 
base for testing included a total of 360 color images: 

[3 road types] x [30 images per road type] x [4 atmospheric conditions] 

Examples of the degraded imagery generated are shown in Figures 3-17 through 3-20. Figures 3- 
17 through 3-19 depict the red, green and blue bands of a single image from each of the three road 
types, degraded to the four visibility levels. As can be seen from these figures, there are slight dif- 
ferences in contrast between each spectral band, with the blue band providing the best contrast, 
Figure 3-20 shows a composite color image of the same three road images, degraded to four visi- 
bility levels. Note that in the bottom row of all these figures, representing 1OOm visibility, the road 
features are nearly indistinguishable from the background. 
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Figure 3-17: Color bands of rural road without lane markings at various visibilities 
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Figure 3-18: Color bands of rural road with yellow centerline at various visibilitics 
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Figure 3-19: Color bands of multi-lane divided highway at various visibilities 
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Figure 3-20: Color images of three road types degraded at various visibilities 
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3.4.3.1.3.4 ALVINN Performance Testing 

Using the sets of simulated weather-degraded road scene images, the team assessed the sensitivity 
of the ALVINN road-following algorithm. This analysis ultimately served to characterize the 
operational envelope of the sensor/algorithm performance over a range of visibility levels. 

For each set of weather-degraded images (i.e., different visibility levels), the original (unde- 
graded) images were used to generate a training set for ALVINN. This process involved artifi- 
cially shifting and rotating the first five images from each sequence 60 times to produce a total of 
300 training images in which the vehicle appeared shifted and rotated relative to the roads in the 
original five images. These transformations took into account the geometry of both the camera 
and lens. For each of these transformed images, a “target” radius of curvature was computed 
based on the human driver’s steering radius on the original image, and the magnitude of the shift 
and rotation in the transformed image. This procedure for generating the training set is the same 
process normally used for training ALVINN (For more details, see [IS]). 

The resulting 300 images were then used to train the ALVINN system’s artificial neural network. 
Training involved repeatedly presenting the 300 images to the network and teaching the system to 
output the correct radius of curvature for each. This training procedure required approximately 
two minutes for each of the three sets of images. Recall that these three image sets represented a 
multi-lane divided highway, two-lane country road without lane markings, and a country road 
with a yellow centerline. 

After training a network on undegraded images from each of the three road types, the team then 
tested the three networks on a disjoint set of images with various levels of degradation, The test- 
ing procedure was conducted as described below. 

For each of the three road types, a set of 225 test images were generated for each of the visibility 
conditions by shifting and rotating the remaining 25 images using the technique described above 
(recall that five of the 30 original images were used to build the training set). This method of aug- 
menting the test set was necessary since the remaining 25 original images did not contain enough 
variety of radii of curvature to thoroughly test ALVINN. More specifically, for most of the 
remaining 25 images in each set, the target radius of curvature was close to straight ahead and 
therefore did not exercise the networks completely. The transformed set of images showed the 
road at a greater variety of positions and orientations, and therefore required the network to pro- 
duce a wider range of output responses. 

This procedure provided five sets of 225 test images for each of the three road types. The five sets 
were comprised of images with visibilities of 1OOOm (the original image set), 700m, 400m, 300m 
and 100m. Just as in the training procedure, each of the test images was tagged with a target 
radius of curvature representing the direction the driver would steer in that situation. The network 
trained on the undegraded (original) divided highway images was presented with the five sets of 
test images depicting the divided highway in various visibility conditions. The networks estimate 
of the radius of curvature for each image was compared with how the driver would steer on each 
of the images (i.e., the “optimal” response). The larger the difference between the networks and 
the driver’s responses, the bigger the error generated by the network. 
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To make these error measurements more intuitively meaningful, they were converted to a dis- 
placement error using the following procedure. Any difference between the radius of curvature 
steered by the human driver and ALVINN’s radius of curvature results in two diverging trajecto- 
ries; if the vehicle followed the arc indicated by ALVINN, it would follow a different path than if 
it followed the arc indicated by the human driver. All errors reported below were generated by 
measuring the distance the path dictated by ALVINN would diverge from the path dictated by the 
human driver if the vehicle was driven along each path for one second at the typical speed for the 
road type being tested (60 mph for the divided highway and 35 mph for the rural two-lane roads). 
This trajectory divergence distance is identical to the concept of Time-to-Trajectory Divergence, 
described in Section 3.6 on decision algorithms. 

Figures 3-21 and 3-22 summarize the results of the weather-degraded imagery experiments. The 
first plot shows the mean trajectory divergence distance as a function of visibility for the three 
road types. The X-axis represents visibility, ranging from 1OOm visibility on the left to 1OOOm vis- 
ibility on the right. The Y-axis represents the mean trajectory divergence distance (in meters) for 
the 225 test images under each of the visibility conditions. 
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Figure 3-21: Mean trajectory divergence as function of visibility for three road types 
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Figure 3-22: Standard deviation of trajectory divergence vs. visibility for three roads 

The first important characteristic to observe from these results is that, in general, as visibility 
decreases, the trajectory divergence measure (error) increases. Intuitively, this makes sense: as it 
becomes harder to see, the network makes larger errors in estimating the correct direction to steer 
the vehicle. 

The second important aspect of the system performance evident from the plots is that this perfor- 
mance degradation is not linear, In fact, the performance of the system is only slightly affected by 
degraded conditions in which visibility is better than 400m. A more significant impact on perfor- 
mance can be seen when visibility is reduced to 300m. When visibility is reduced to lOOm, per- 
formance is substantially degraded, with an increase in trajectory divergence of over 100 percent 
in the case of the divided highway. 

The third important finding involves the standard deviation of the trajectory divergence measure 
for the three road types as depicted in the second graph. Just as the mean trajectory divergence 
increases as visibility decreases, so does the standard deviation of this measure. Also note the 
sharp increase in standard deviation beginning in the vicinity of 300m visibility. 

Two additional sets of degraded image files were generated using a different sun angle (300 rear of 
zenith) as a MODTRAN input. These images, processed at 100m and 300m visibility levels, 
resulted in poorer road-following algorithm performance compared to the 1OOm and 300m visibil- 
ity files processed with the sun angle at zenith. Altering the sun angle changed the atmospheric 
backscatter effects on the visible light energy and reduced contrast in the road scenes. 

In summary, this experiment assessing the effect of weather-degradation on the ALVINN lateral 
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position sensing system provided valuable information regarding the performance of forward- 
looking vision systems for roadway departure prevention. It has verified expectations that if visi- 
bility is sufficiently reduced, it will have a negative impact on sensor data processing perfor- 
mance. Furthermore, these experiments have quantified this effect. The findings suggest that 
ALVINN is relatively immune to the effects of adverse environmental conditions down to a visi- 
bility level of approximately 300m. When visibility becomes severely degraded, falling below 
300m, ALVINN exhibits a relatively rapid decrease in road position estimation accuracy. 

Not all aspects of adverse environmental conditions have been modeled in this experiment. For 
example, the effects of snow obscuring the road features and effect of specular reflection off wet 
pavement have not been includes in these analyses. While these effects are undoubtedly important 
and should be addressed in Phases II and III of this program, the results from this experiment 
alone will provide a sound basis for the mathematical models of countermeasure performance to 
be developed in Task 4. 

In general, tests of the ALVINN forward-looking lateral position detection system indicate that it 
can determine the location of the lane center one second ahead of the vehicle to an accuracy of 
approximately lo-25cm. Since ALVINN does not rely on specific features (such as lane markers) 
being visible, but instead learns to rely on whatever features are present in the image, it can local- 
ize the lane on a variety of road types in a range of weather and lighting conditions. 

However there is a downside to this flexibility. In order to adapt to a new type of road (e.g. one 
with a different lane marker configuration), ALVINN’s neural network must be retrained. This 
retraining procedure takes approximately two minutes, during which ALVINN is unable to pro- 
vide estimates of the lane position. This “downtime” is a problem since it means a lane departure 
warning system based on ALVINN would be unable to provide warnings during this period. 
Additionally, to retrain ALVINN requires the driver be steering correctly, an assumption that may 
not be valid for an impaired or inattentive driver. While limited success in overcoming these 
shortcomings has been achieved using a library of pretrained ALVINN neural networks to limit 
the need for retraining, a more comprehensive method is necessary to allow for rapid reconfigura- 
tion to changes in the driving situation. 

The RALPH system, described in the next section, is an alternative lateral position detection sys- 
tem tested as part of Task 3. RALPH maintains ALVINN’s ability to adapt to new driving condi- 
tions, but is able to perform this adaptation almost instantly, without the need for explicit training 
by the driver. 

3.4.3.2 RALPH 

The RALPH (Rapidly Adapting Lateral Position Handler) system is a forward-looking lateral 
position detection system developed jointly by Carnegie Mellon University and AssistWare Tech- 
nology [20]. RALPH decomposes the problem of steering a vehicle into three steps, 1) sampling 
of the image, 2) determining the road curvature, and 3) determining the lateral offset of the vehi- 
cle relative to the lane center. The output of the later two steps are combined into a steering com- 
mand, which can be compared with the human driver’s current steering direction as part of a road 
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departure warning system, using the Time-to-Trajectory-Divergence (TTD) technique described 
in Section 3.6. 

3.4.3.2.1 RALPH Sensor Configuration 

A typical scene of the road ahead, as imaged by a video camera mounted next to the rearview mir- 
ror on our testbed vehicle, is depicted on the left of Figure 3-23. RALPH can utilize either black 
and white or color images, using a color-based contrast enhancement technique described in [ 191. 
Obviously much of this image is irrelevant for the driving task (e.g. the parts of the image depict- 
ing the sky or the dashboard of the vehicle). These parts of the scene are eliminated, and only the 
portions of the scene inside the white trapezoid are processed. While the lower and upper bound- 
aries of this trapezoid vary with vehicle velocity (moving further ahead of the vehicle, towards the 
top of the image, as vehicle speed increases), they typically project to approximately 20m and 
70m ahead of the vehicle, respectively. 

Figure 3-23: Forward looking image (left), and RALPH’s sampling strategy (right) 

The second, and perhaps more important aspect of the trapezoid’s shape is its horizontal extent. It 
is configured so that its width on the groundplane is identical at each row of the image. The hori- 
zontal distance that each row of the trapezoid encompasses is approximately 7.0 meters, about 
twice the width of a typical lane. This trapezoid is selectively sampled according to the strategy 
depicted in the schematic on the right of Figure 3-23 so as to create a low resolution (30x32 pixel) 
image in which important features such as lane markings, which converged towards to top of the 
original image, now appear parallel in the low resolution image. Note that this image resampling 
is a simple geometric transformation, and requires no explicit feature detection. 

3.4.3.2.2 RALPH Processing Algorithm 

The “parallelization” of road features described above is crucial for the second step of RALPH 
processing, curvature determination. To determine the curvature of the road ahead, RALPH uti- 
lizes an “hypothesize and test” strategy. RALPH hypothesizes a possible curvature for the road 
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ahead, subtracts this curvature from the parallelized low resolution image, and tests to see how 
well the hypothesized curvature has “straightened” the image. 

3.4.3.2.2.1 RALPH Curvature Determination 

The process RALPH utilizes to determine curvature is depicted in Figure 3-24. In this example, 
five curvatures are hypothesized for the original image, shown at the top. For each of the five 
hypothesized curvatures, the rows of the image are differentially shifted in an attempt to “undo” 
the curve and straighten out the image features. For left curve hypotheses, rows are shifted 
towards the right and for right curve hypotheses, rows are shifted towards the left. For the more 
extreme hypothesized curvatures (on the far left and right), the rows of the original image are 
shifted further than for the less extreme curvatures (in the middle). For all the hypothesized curva- 
tures, rows near the top of the image, corresponding to regions on the groundplane further ahead 
of the vehicle, are shifted further horizontally than rows near the bottom of the image. This differ- 
ential shifting accounts for the fact that for a given hypothesized curvature, the road will be dis- 
placed more at the top of the image, far ahead of the vehicle, then at the bottom. The exact shift 
distance for each row in the transformed images is determined both by the geometry of the camera 
and the particular curvature hypothesis being tested. 

Road Curvature 
Hypotheses f 

Wirker 

Figure 3-24: RALPH curvature hypotheses 

As can be seen from Figure 3-24, the second curvature hypothesis from the right, corresponding 
to a shallow right turn, has resulted in a transformed image with the straightest features, and there- 
fore should be considered the winning hypothesis. The technique used to score the “straightness” 
of each hypothesis is depicted in Figure 3-25. After differentially shifting the rows of the image 
according to a particular hypothesis, columns of the resulting transformed image are summed ver- 
tically to create a scanline intensity profile, shown in the two curves at the bottom of Figure 3-25. 
When the visible image features have been straightened correctly, there will be sharp discontinui- 
ties between adjacent columns in the image, as show in the right scanline intensity profile in Fig- 

42 



ure 3-25. In contrast, when the hypothesized curvature has shifted the image features too much or 
too little, there will be smooth transitions between adjacent columns of scanline intensity profile, 
as depicted in the left scanline intensity profile of Figure 3-25. By summing the maximum abso- 
lute differences between intensities of adjacent columns in the scanline intensity profile, this prop- 
erty can be quantified to determine the curvature hypothesis that best straightens the image 
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Figure 3-25: RALPH curvature scoring technique 

An important attribute to note about this technique for determining road curvature is that it is 
entirely independent of the particular features present in the image. As long as there are visible 
features running parallel to the road, this technique will exploit them to determine road curvature. 
These features need not be located at any particular position relative to the road, and need not 
have distinct boundaries - characteristics required by systems that utilize strong a priori road mod- 
els and edge detection. 

3.4.3.2.2.2 RALPH Lateral Offset Determination 

The next step in RALPH’s processing is to determine the vehicle’s lateral position relative to the 
lane center. This is accomplished using a template matching approach on the scanline intensity 
profile generated in the curvature estimation step. The scanline intensity profile is a one dimen- 
sional representation of the road’s appearance as seen from the vehicle’s current lateral position. 
By comparing this current appearance with the appearance of a template created when the vehicle 
was centered in the lane, the vehicle’s current lateral offset can be estimated. 

Figure 3-26 illustrates this lateral offset estimation procedure in more detail. Here, the current 
scanline intensity profile is depicted on the left, and the template scanline intensity profile, gener- 
ated when the vehicle was centered in the lane, is depicted on the right. By iteratively shifting the 
current scanline intensity profile to the left and right, the system can determine the shift required 
to maximize the match between the two profiles (as measured by the correlation between the two 
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curves). The shift distance required to achieve the best match is proportional to the vehicle’s cur- 
rent lateral offset. 
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Template 
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Figure 3-26: RALPH lateral offset determination technique 

Note that as with the curvature determination step, this process does not require any particular 
features be present in the image. As long as the visible features produce a distinct scanline inten- 
sity profile, the correlation based matching procedure will be able to determine the vehicle’s lat- 
eral offset. In particular, even features without distinct edges, such as pavement discoloration due 
to tire wear or oil spots, generate identifiable scanline intensity profile variations which RALPH 
can exploit to determine lateral offset. This is a performance feature which edge-based road detec- 
tion systems do not share. 

3.4.3.2.2.3 RALPH Adaptation to Changing Conditions 

Another important feature of RALPH stems from the simplicity of its scanline intensity profile 
representation of road appearance. The 32 element template scanline intensity profile vector is all 
that needs to be modified to allow RALPH to handle a new road type. Modifying this vector is 
extremely easy. In the current RALPH implementation there are four ways of adapting the tem- 
plate to changing conditions. 

The first method involves the driver centering the vehicle in its lane, and pressing a button to indi- 
cate that RALPH should create a new template. In under 100 msec, RALPH performs the process- 
ing steps described above to create a scanline intensity profile for the current road, and then saves 
it as the default template. From that point on, RALPH can warn the driver of road departure dan- 
ger on this road using the newly created template to determine the vehicle’s position relative to 
the lane center. 

A second method for acquiring a template appropriate for the current road type is to select one 
from a library of stored templates recorded previously on a variety of roads. RALPH can select 
the best template for the current conditions by testing several of these previously recorded tem- 
plates to determine which has the highest correlation with the scanline intensity profile created for 
the current image. 

The third method of template modification occurs after an appropriate template has been selected. 
During operation, RALPH slowly “evolves” the current template by adding a small percentage of 
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the current scanline intensity profile to the template. This allows the current template to adapt to 
gradual changes in the road’s appearance, such as those caused by changes in the sun’s angle. 

RALPH handles more abrupt scene changes, such as changes in lane marker configuration, using 
the final and most interesting template modification strategy. In this technique, RALPH uses the 
appearance of the road in the foreground to determine the vehicle’s current lateral offset and the 
curvature of the road ahead, as described above. At the same time, RALPH is constantly creating 
a new “rapidly adapting template” based on the appearance of the road far ahead of the vehicle 
(typically 70-100 meters ahead). This rapidly adapting template is created by processing the dis- 
tant rows of the image in the same manner as described above. The roads curvature is assumed to 
be nearly constant between the foreground and background, allowing RALPH to determine where 
the road is ahead and therefore what the new template should look like when the vehicle is cen- 
tered in its lane. 

If the appearance of the road ahead changes dramatically, RALPH uses this technique to quickly 
create a template appropriate for the new road appearance. When the vehicle actually reaches the 
new road, RALPH determines that the template it was previously using is no longer appropriate, 
since it does not match the scanline intensity profile of the current image. It therefore swaps in the 
rapidly adapting template, and continues driving. Note that this rapid adaptation occurs in the 
time span of approximately 2 seconds, without any human intervention. 

3.4.3.2.3 RALPH Performance 

As part of Task 3, the project team conducted extensive laboratory, test track and on-road experi- 
ments in order to characterize RALPH’s performance. The results of these tests, presented below, 
indicate that RALPH can accurately estimate the vehicle’s lateral position on the road, as well as 
the curvature of the road ahead, under a wide variety of conditions. 

3.4.3.2.3.1 Laboratory Tests 

An important factor determining roadway departure countermeasure effectiveness is the accuracy 
of the sensing system employed. A system with low accuracy will be prone to false alarms, and 
will potentially underestimate the danger of true roadway departure situations. The crucial accu- 
racy metric for RALPH is how well can it estimate the location of the road ahead of the vehicle, 
since it is the road location that will be used to determine the danger of roadway departure (See 
Section 3.6 for more details on this algorithm). 

In order to quantify RALPH’s ability to accurately determine the position of the road ahead, the 
project team conducted controlled laboratory tests in which accurate measurements of the road’s 
actual location could be made. To facilitate these measurements, the team collected high quality 
video sequences of road scenes, using a Umatic 3/4 inch VCR. These scenes were collected in the 
Navlab 5 test vehicle, using the same camera mounted in the same location (next to the rear view 
mirror) as in the experiments described in following sections, These sequences include both day 
and night operation, as well as images of a variety of road types, including both rural roads and 
multi-lane divided highways. The test road sequences recorded on videotape were all between 
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four and nine miles in length. While recording the sequences, the driver repeatedly changed the 
vehicle’s lateral position within the lane in order to obtain a wide range of images. 

The video sequences were subsequently replayed in the laboratory, and RALPH was used to track 
the road, More specifically, RALPH combined its estimates of the vehicle’s lateral offset and the 
curvature of the road ahead into an estimate of the lane center location one second ahead (about 
25m) of the vehicle. Note this is the same estimation technique used by the ALVINN system in 
the previous experiments. 

RALPH’s lane center position estimate was compared in real time with the estimate of lane center 
provided manually by the experimenter. The experimenter continuously indicated his estimate of 
the lane center location by keeping a crosshair centered over the right lane marking one second 
ahead of the vehicle in the image using a computer mouse. The difference between RALPH’s esti- 
mate of lane position and the experimenter’s estimate was stored for later analysis. 

The results of these tests are summarized in Table 3-3. For each of the conditions tested, the table 
shows the mean and standard deviation of the difference between RALPH’s estimate of the lane 
center position, and the experimenter’s estimated of the lane center position. In general, RALPH’s 
performance was quite good in all the conditions tested, with the total mean disagreement 
between RALPH and the experimenter of 13.2cm, which is just slightly larger than the wide of a 
typical single lane edge marker. As was expected, lower mean and standard deviation was 
observed in the conditions with the most consistent features. One such situation is shown in Fig- 
ure 3-27. It depicts a daytime highway scene in which the lane markers are very clearly visible. 
Under these conditions, the mean disagreement between RALPH and the experimenter was 
11.4cm. The variance of the disagreement was 14.3cm. Note that a substantial portion of the dis- 
agreement between RALPH and the experimenter can be attributed to inconsistency in the exper- 
imenter’s estimate of the lane center position. Accurately indicating the lane position 20m ahead 
using a mouse is a difficult task. In a series of repeatability tests, it was determined that the exper- 
imenter’s estimate of lane position over two different trials on the same section of videotape var- 
ied by an average of 7.3cm. 

Table 3-3: RALPH lane location estimation accuracy 
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Figure 3-27: RALPH processing a daytime highway image 

Figure 3-28: RALPH processing a daytime highway image with heavy shadows 
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Figure 3-29: RALPH processing a nighttime highway image 

Figure 3-30: RALPH processing a daytime rural road image 
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Figure 3-31: RALPH processing early morning rural road image with glare off road 

Figure 3-32: RALPH processing a nighttime rural road image 
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On the same stretch of highway under conditions of heavy shadows (See Figure 3-27), the mean 
and standard deviation of RALPH’s lane position estimation error increased somewhat to 13.8cm 
and 18.9cm, respectively. This increase in error was due primarily to the limited dynamic range of 
the camera, causing the shadowed regions of the image to be black and/or the areas in sunlight to 
be saturated. 

In contrast, RALPH’s lane location on the same stretch of highway ability improved slightly at 
night. As can be seen in Figure 3-27, the lane markers were very distinct in this situation, result- 
ing in a mean error of 11. lcm and a standard deviation of 13.&m. 

RALPH’s performance on rural roads such as the one in Figures 3-27 was fairly similar to the 
highway results. The mean and standard deviation under favorable daytime conditions did 
increase slightly over the corresponding figures for favorable daytime highway images, to 13.7cm 
and 16.2cm, respectively. This increase was primarily caused by two factors. First, more frequent 
and substantial grade changes on the rural roads changed the perspective of the camera relative to 
the road. This resulted in slight additional lane position estimation errors, particularly at grade 
transition points. Second, there were several cross streets intersecting the section of rural road 
tested, which occasionally resulted in momentary inaccuracy when the lane marker’s disappeared. 
However the increase in average lane position estimation error due to these effects was small, on 
the order of two centimeters. 

One problem with lane tracking systems which rely exclusively on lane markers to locate the road 
ahead is that they sometimes have difficulty when glare off the pavement makes the markers hard 
to find. This type of glare typically occurs when the pavement is wet, and/or when the sun is low 
on the horizon. To quantify the effect of these conditions on RALPH, a video sequence was col- 
lected on the same rural images during the early morning hours heading into the rising sun. An 
example image from this sequence is shown in Figure 3-27. As was expected, the mean and stan- 
dard deviation of RALPH’s error increased under these conditions, to 15.&m and 17.2cm, respec- 
tively. However these increases were slight, again in the range of 2cm. RALPH was still able to 
accurately locate the road ahead under these conditions by adapting its processing to utilize the 
boundary between the bright pavement and the dark shoulder. This ability to adapt to changing 
conditions was determined to be particularly important in the on-road tests, described in Section 
3.4.3.2.3.3. 

In summary, the team’s laboratory tests indicate that RALPH can localize the position of the road 
ahead of the vehicle to within approximately the width of a single lane marker under a variety of 
conditions. To further characterize RALPH’s ability to perform repeatably and reliably, the team 
conducted extensive test track and on-road experiments, described below. 

3.4.3.2.3.2 Test Track Experiments 

Experiments were conducted at the Vehicle Research and Test Center (VRTC) in East Liberty, 
Ohio, and on a road segment outside of Pittsburgh often used by Carnegie Mellon for testing. 
These tests involved repeatedly driving the same stretch of roadway at different speeds and with 
different degrees of driver vigilance in order to determine whether variability in driver perfor- 
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mance could be detected with RALPH. These tests were performed with a single individual from 
the project team as the driver, when there were no other vehicles on the test road. 

In the videotape experiments presented above, the goal was to quantify RALPH’s ability to find 
the position of the road ahead by combining RALPH’s estimate of the vehicle’s lateral position 
and its estimate of the curvature of the road ahead. In the first set of test track experiments, the 
goal was to tease apart this combination, and measure RALPH’s ability estimate the curvature of 
the road ahead. In this experiment, the Navlab 5 test vehicle was driven through the S-curve 
shown in Figure 3-33. 

- 
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Figure 3-33: S-curve used for testing RALPH 

Careful measurement of the first curve indicates that it has an average radius of curvature of 
approximately 343m. Figure 3-34 shows RALPH’s estimate of the road curvature during two tra- 
versals of the entire S-curve at 55mph. 
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Figure 3-34: RALPH’s curvature estimate on two traversals through the s-curve 
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Note the consistency in the curvature estimate between the two traversals. RALPH’s mean esti- 
mate for radius of curvature during the first traversal of the first curve was 373m, and the mean on 
the second traversal was 374m. Not only are the two estimates extremely close, but they match 
quite closely to the measured radius of 343m. In fact, the 30m discrepancy between the measures 
curve radius and RALPH’s estimate may at least partially be attributed to uncertainty in the man- 
ual curvature measurement. 

The next set of experiments was done to determine if anomalous driver behavior can be detected 
using RALPH. Again the driver drove twice through the S-curve at 55mph. The first time 
through, the driver concentrated on accurate driving. The second time through, the driver was 
momentarily distracted by an in-cab task similar to the task developed for the Iowa Driving Simu- 
lator experiments (see Volume II of this report). The distractor task required the driver to glance to 
the back of the vehicle for up to two seconds. The goal was to determine if the lane deviations 
resulting from this momentary inattention could be detected in the lane tracking output RALPH 
produces. 

A graph of RALPH’s estimate of the vehicle’s lateral position, both during normal driving and 
while the driver was performing the distractor task are shown in Figure 3-35. As can be seen from 
the graph, the relatively large magnitude lane deviations resulting from momentary distraction are 
clearly discernible when compared with driver’s normal lane deviations. Algorithms to detect 
these anomalous lane deviations are presented in Section 3.6, and investigated further in the 
driver simulator tests described in Volume II of this report. 
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Figure 3-35: Lane deviation in normal driving, and when the driver is distracted 

The results of these test track experiments indicate that RALPH can repeatably detect both the 
curvature of the road ahead, as well as the excessive lane deviation by the driver. However these 
experiments were conducted under favorable weather and lighting conditions. The next set of on- 
road tests were conducted in order to quantify RALPH’s reliability under the range of conditions 
typically encountered in normal driving. 
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3.4.3.2.3.3 On-road Tests 

One of the most significant potential drawbacks of countermeasures that rely on video cameras 
for sensor input is their susceptibility to adverse conditions. Systems that rely on visible features 
to determine the vehicle’s position on the road can have trouble when these distinctions become 
difficult to detect, due to adverse weather, poor lighting, or degraded pavement. To quantify this 
effect, the project team conducted a series of on-road tests of the RALPH system. 

The culmination of these experiments was a 2850 mile test drive from Washington, DC to San 
Diego, CA. Except for a few detours, the trip exclusively involved highway driving. The trip 
included many of the difficulties typically encountered in normal driving - nighttime driving, 
driving at sunset when the sun is low on the horizon, driving through rain storms, driving on 
poorly marked roads, and driving through construction areas. 

During the 2850 mile trip, statistics about the RALPH system’s “availability” were collected. 
Availability is defined to be the percent of the distance and time traveled during which RALPH 
was tracking the road correctly. Correct tracking is difficult to quantify in live tests (as opposed to 
the videotape tests described in Section 3.4.3.2.3.1). To measure tracking correctness, the assump- 
tion was made that the driver is able to steer correctly, so if the steering direction recommended 
by RALPH disagreed significantly from the driver’s steering direction, then RALPH was not 
tracking correctly. In more detail, when the steering direction suggested by RALPH differed from 
the driver’s steering direction such that following RALPH steering arc at the current speed would 
result in a difference in lateral acceleration of 0.04g or greater, then RALPH was judged to be 
tracking incorrectly. This measure is closely related to the Time-to-Trajectory-Divergence (TTD) 
algorithm use for lane departure warning, described in Section 3.6. 

Overall, the results were quite encouraging. By the above definition, RALPH was able to accu- 
rately track the road ahead of the vehicle during 98.2 percent (2796/2850 miles) of the trip. Due to 
the system’s ability to adapt to changing conditions, RALPH was able to track the road in situa- 
tions which would be difficult for other lane trackers, particularly those that rely on finding dis- 
tinct lane markers. Some of the different situations that RALPH was able to handle are illustrated 
in Figures 3-37 .through 3-39. 

Some of the roads, like the two shown in Figure 3-36, were very much like one would expect on a 
major highway - nice pavement and good lane markings. Even when the lane markers we missing, 
as on the freshly paved road in the left hand image of Figure 3-37, RALPH was able to continue 
tracking the road by exploiting the boundary between the pavement and the off road area, This 
same type of road proved quite difficult at night however, when the edge formed by the pavement 
boundary was no longer visible. A 10 mile stretch of new, unpainted highway encountered at 
night in Kansas accounted for a significant portion of the 1.8 percent tracking failure during the 
trip. Rain proved to be less of a problem. Even when the specular reflection off wet pavement 
obscured the lane markings, as in the right hand image of Figure 3-37, RALPH was able to key 
off the tracks left in the wet pavement by the vehicle in front to locate the road ahead. 

West of the Rocky Mountains, there were some stretches of very poor roads (See Figure 3-38). 
Often the lane markers were nearly invisible due to wear (left). Several times there were long 
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stretches of construction where the road was basically very fine, packed gravel, without any lane 
markings (right). During these stretches, RALPH was able to exploit the differences in appear- 
ance of the packed gravel and the loose gravel around it and continue tracking the road. 

The freeways in California posed an interesting challenge. Instead of having painted lane mark- 
ings to delineate lanes, they had reflectors that were nearly invisible during the day (See left 
image, Figure 3-39). But RALPH was able to track the lane using the discoloration from the oil 
spot down the center of the lane. RALPH also performed well on the I-15 HOV lane into San 
Diego, which had no visible lane markings, but a strong boundary between the cement road sur- 
face and the asphalt shoulder (right image, Figure 3-39). 

The situation which gave the system the most difficulty was in city traffic, when the road mark- 
ings were either missing or obscured by other traffic (See Figure 3-39). However, as was deter- 
mined in Task I, relatively few roadway departure crashes occur in this type of situation. 
Furthermore, in this and most of the other situations RALPH had difficulty with, it was able to 
recognize that it couldn’t track the road, and inform the driver of its confusion. In a deployed 
countermeasure, this ability to identify confusing situations could be used to minimize false 
alarms. 

In conclusion, extensive tests of vision-based lateral position detection systems both with and 
without forward preview indicate that such systems are able to accurately detect the vehicle’s 
position and orientation relative to the roadway in a wide variety of situations. The impact on 
overall system performance of system inaccuracies in the few remaining conditions that do pro- 
vide difficulty will be modeled as part of Task 4. 

Figure 3-36: Examples of well marked roadway encountered in cross country test 
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Figure 3-37: Roads without strong markings (left) and with wet pavement (right) 

Figure 3-38: Road with severely worn markings (left) and unpaved road (right) 
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Figure 3-39: California freeways with reflectors instead of painted lane markings 
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Figure 3-40: Challenging images from city driving 
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3.5 Goal 3: Inferring Driver’s Intentions 

Inferring the driver’s intention is an important goal for minimizing false alarms in a lateral road- 
way departure countermeasure. For instance, what appears to be a dangerous lane excursion may 
actually be a harmless lane change maneuver. Other situations which could potentially result in 
false alarms by a lane departure warning system include: 

l Pulling to the side of the road 

l Avoiding an obstacle in the travel lane 

l Turning onto a cross street 

l Taking an exit ramp 

Lane change maneuver’s and pulling to the side of the road are perhaps the most difficult situa- 
tions to identify as harmless, since they most resemble true roadway departure crash conditions. 
While no existing technology for achieving this type of discrimination could be identified for test- 
ing during our Task 3 experiments, the project team believes that such technology is implement- 
able. The simplest approach to detecting intentional lane changes would be to monitor the 
vehicle’s turn indicator. The obvious potential problem is that driver’s often do not signal their 
intentions using their turn indicator. One hypothesis is that false alarms might be acceptable under 
these conditions, and might even encourage drivers to more faithfully utilize their turn signal. 

More sophisticated methods to detect intentional maneuvers to change lanes or pull to the side of 
the road include monitoring for characteristic vehicle dynamic state changes. For example, lane 
change maneuvers typically exhibit a sinusoidal lateral acceleration pattern. Pulling to the side of 
the road is usually preceded by a reduction in vehicle speed. A countermeasure that could identify 
these characteristic signs of an intentional maneuver, could suppress warnings under these condi- 
tions and avoid false alarms. 

The signs of intentional maneuvers are likely to vary from driver to driver, and therefore some 
form of adaptation will most likely be required to effectively avoid false alarms while ensuring 
that dangerous lane excursions are still detected. Promising preliminary work in this area has been 
conducted by Honeywell using an artificial neural network approach to discriminate between nor- 
mal and dangerous driving behavior [ 121. The project team recommends further investigations in 
this area as part of Phase II and III. 

Lane excursions in order to avoid obstacles in the travel lane are an interesting case. Emergency 
evasive maneuvers to avoid an obstacle are relatively easy to detect, because the steering and 
pedal inputs provided by the driver are typically far in excess of what is usually observed during 
normal driving. In fact, the forward looking lateral countermeasures developed and tested in Task 
3 includes a mechanism by which responses from the countermeasure are suppressed during 
extreme steering maneuvers. The assumption is that extreme maneuvers indicate an attentive 
driver, and that the judgement of an attentive driver will be more appropriate than that of a coun- 
termeasure. Further tests need to be conducted to determine if intentional extreme maneuvers can 
be discriminated from unintentional control inputs, such as inadvertent steering as the driver 
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slumps on the wheel after passing out. 

Detection of intentional maneuvers to take an offramp or turn onto a cross street should also be 
facilitated by monitoring the turn indicator, and by reasoning about the dynamic state of the vehi- 
cle. An additional source of information which should improve detection of these situations is a 
vehicle positioning system. Knowing the vehicle’s location on a digital map may allow a counter- 
measure to infer that the vehicle is slowing down and moving towards the road edge in order to 
turn at the upcoming intersection. A more detailed discussion of the capabilities of vehicle posi- 
tion detection systems is presented in Section 4.0 on longitudinal countermeasures. 

3.6 Goal 4: Detect Potential for Roadway Departure 

The next action that must be performed by an effective roadway departure countermeasure is to 
combine the information about the vehicle and driver’s state into a measure of the roadway depar- 
ture danger. Two algorithms to accomplish this functional goal were investigated as part of Task 
3. The first algorithm, Time-to-Line-Crossing (TLC), originally developed by Godthelp [lo] uses 
the time until one vehicle tire will cross the lane boundary as a measure of roadway departure 
danger. The second algorithm, Time-to-Trajectory-Divergence (TTD), was developed as part of 
this program to overcome the rigidity of the TLC algorithm. TTD compares the driver’s steering 
arc with the steering arc suggested by the countermeasure in order to determine the danger of a 
road departure. The results of in-vehicle tests with these two algorithms are discussed in this sec- 
tion. The results of driving simulator tests of these two algorithms are presented in Volume II of 
this report. 

3.6.1 Time-to-Line-Crossing (TLC) Algorithm 

The Time-to-Line-Crossing (TLC) algorithm computes the time (in seconds) until one of the vehi- 
cle’s tires will cross one of the lane boundaries, if it continues along its current trajectory. The 
equation used to calculate TLC is extremely simple: 

TLC = g 
V 

where: 

D = Distance between the closest tire and the lane boundary the vehicle is 
moving towards (m) 

V = Lateral velocity of the vehicle (m/s) 

If TLC falls below a certain threshold, meaning the vehicle will shortly cross the lane boundary if 
it continues along its current path, a countermeasure would trigger a response to alert the driver of 
the danger. 

The major advantage of this algorithm is that it only requires relatively easy to compuie state vari- 
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ables, the vehicle’s lateral position on the road and its lateral velocity. This makes it an appropri- 
ate algorithm for systems without forward preview, like the AURORA system described in 
Section 3.4.2. The team performed a number of tests of AURORA to quantify its ability to accu- 
rately calculate TLC. As was shown in Section 3.4.2, AURORA can accurately calculate one of 
the two parameters required for computing TLC, the vehicle’s lateral position. In the tests 
described in this section, the vehicle’s lateral velocity was calculated by AURORA using the rate 
of change in lateral position over time. More specifically, AURORA computed the difference 
between two estimates of the vehicle’s lateral position, separated by a short time, typically 0.25 
seconds. By dividing the change in lateral position by the elapsed time between the estimates, 
AURORA was able to calculate the vehicle’s lateral velocity. 

Using its estimates of lateral position and lateral velocity, AURORA was able to use the previous 
equation to estimate TLC quite accurately, as can be seen from Figure Figure 3-41. This graph 
was generated by comparing AURORA’s estimate of the time-to-line-crossing with the actual 
time-to-line-crossing during the one second interval prior to crossing the lane boundary. The dark, 
solid line represents the actual TLC, as measured backwards from the actual time when the vehi- 
cle crossed the edge of the lane (accurate ground truth estimates of TLC were possible because 
the road imagery data was captured on videotape). The results of these experiments indicate that 
AURORA can estimate TLC with an average error of approximately 0.2 seconds, and a standard 
deviation of 0.23 seconds. This level of noise in the TLC estimate could potentially result in vari- 
ations in warning onset of approximately 0.2 seconds. This magnitude of error should be small 
enough so as not to be noticed by a driver. Tests of this hypothesis were conducted in the Iowa 
driving simulator experiments described in Volume II of this report. 
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Figure 3-41: AURORA’s estimate of TLC before lane crossing 

The one shortcoming of the TLC algorithm that was discovered during in-vehicle tests was its 
tendency to produce false alarms while the driver is negotiating curves. On the approach and 
entrance to curves, typical drivers have a tendency to steer towards the inside of the curve. To a 
system without forward preview like AURORA, this can appear to be a potentially dangerous 



drift towards the lane boundary. In order to avoid the false alarms that can occur in this situation, 
and take advantage of the additional information a system with forward preview can provide, the 
project team developed a second lateral warning algorithm, Time-to-Trajectory-Divergence 
(TTD). 

3.6.2 Time-to-Trajectory-Divergence (TTD) Algorithm 

Instead of computing the time until the vehicle will cross the lane boundary, the TTD algorithm 
compares the driver’s steering arc with the “optimal” steering arc generated by the countermea- 
sure. If the driver’s and the countermeasure’s arcs differ significantly, this is an indication that the 
driver is steering inappropriately, and that a lane departure warning should be triggered. 

In more detail, the ALVINN and RALPH forward looking systems output the radius of the arc 
that the vehicle should follow in order to bring it to the center of the lane within a fixed time 
period (this period is adjustable, but 1.5 seconds is a typical value). This is presumed to be the 
“optimal” arc. Note that if the vehicle is off to one side of the lane, this arc represents a smooth 
path from the vehicle’s current location back to the center of the lane. To determine whether to 
trigger a roadway departure warning, the TTD algorithms compares the driver’s steering arc with 
the optimal arc. If the two arcs differ, following the driver’s arc instead of the optimal arc would 
result in a path which diverges from the optimal trajectory. The TTD algorithm calculates the time 
until the two diverging paths would be a threshold distance apart (typically about l.Om) at the cur- 
rent velocity. This is obviously a function of both the vehicle’s speed, and the magnitude of the 
difference between the two steering arcs. If TTD, the time until trajectory divergence, falls below 
a threshold (typically about 1.2 seconds), then the countermeasure triggers a warning, since this 
indicates the vehicle is quickly departing the roadway. The equation for calculating TTD is given 
below. The geometric derivation of TTD is provided in Figure 3-42.: 

TTD = . . 

where: 
TTD = time to trajectory divergence (seconds) 
Ye = turn radius of the person (l/m) 

rc = turn radius of the countermeasure (l/m) 
D = threshold divergence distance (- lm) 
v = vehicle velocity (m/set) 

In-vehicle tests of the TTD algorithm indicate several important characteristics. First, the TTD 
algorithm is able to reliably determine when the vehicle is departing the lane. TTD is also appears 
to be less susceptible than TLC to false alarms when the driver “cuts the corner” on curves. The 
“optimal” trajectory as computed by the TTD algorithm naturally cuts the corner, since it involves 
steering the vehicle towards the center of the road a fixed distance ahead of the vehicle. Since this 
trajectory is similar to a person’s natural trajectory, the time to trajectory divergence will remain 
high, even as the driver drifts towards the inside of the lane on curves. 
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Figure 3-42: Derivation of the Time-to-‘Ikajectory-Divergence (TTD) algorithm 
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However TTD still exhibits occasional false alarms during curve negotiation, when the driver cuts 
the corner to a larger extent than the TTD algorithm expects. To further reduce the false alarm rate 
on curves, additional decision logic was added to the TTD algorithm. If the driver is cutting the 
curve by steering more sharply than the optimal trajectory but in the appropriate direction (i.e. left 
vs. right), warnings are suppressed. This allows an additional amount of drift towards the inside 
of curves without triggering a countermeasure response. 

Although they are rare, lane departure crashes off the inside of curves account for about 20 per- 
cent of all run-off-road crashes on curves. The curve cutting logic detects departures off the inside 
of curves in the following manner. If the vehicle drifts too far towards the inside of the curve, the 
sign of the optimal trajectory changes (i.e. instead of steering left to follow the left curve, the opti- 
mal trajectory indicates the driver should steer right to return to the lane center). At this point the 
curve cutting logic is overridden, and the countermeasure triggers a warning. This insures that 
lane departures off the inside of curves will be detected by the countermeasure. 

Experiments comparing the effectiveness of the TLC and TTD algorithms for assessing roadway 
departure danger were conducted on the Iowa driving simulator. The results of these experiments 
are presented in Volume II of this report. 

3.7 Summary 

Crashes in which the vehicle drifts off the road due to inattention or driver impairment were iden- 
tified in Tasks 1 to be an important category of roadway departure crashes. In Task 2, five primary 
functional goals were formulated for a countermeasure to prevent this type of crash. They are: 

1. Monitor vehicle dynamic state 

2. Determine vehicle’s position/orientation relative to road 

3. Infer driver’s intentions 

4. Detect potential for roadway departure 

5. Present phased warning to driver 

Experiments were conducted as part of Task 3 to assess the performance of technology for accom- 
plishing these functional goals. While no complete lateral countermeasure which performs all of 
these functional goals was available for testing, the project team was able to acquire and test tech- 
nology for accomplishing four of the five functional goals (all except inferring the driver’s inten- 
tions) . 

The results of these tests were quite promising. Motion sensors for monitoring the vehicle’s 
velocity and acceleration are inexpensive and quite reliable. Tests of vision systems both with and 
without forward preview indicate they are able to accurately determine the position and orienta- 
tion of the vehicle relative to the roadway in all but the most extreme of conditions. Algorithms 
for detecting when the vehicle is in danger of departing the roadway were developed and verified. 
Simulator experiments described in Volume II indicate that this danger can be effectively commu- 
nicated to the driver through several interfaces, include auditory and tactile signaling. 
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While additional work is required to further develop and quantify the performance of lateral coun- 
termeasure technology, particularly for inference the driver’s intentions, it appears from these 
experiments that effective lane departure warning systems are possible with existing technology. 
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4.0 Longitudinal Countermeasure Sensing/Algorithm Tests 

In Task1 of this program, extensive analyses were conducted to characterize the circumstances 
associated with run-off-road crashes. Results from these analyses indicate that a significant per- 
centage (24.4 percent) of run-off-road crashes occur on curves. The proportion of fatal crashes 
occurring on curves is even higher (42.4 percent) underscoring the importance of curve related 
crashes. Table 4-l (originally Table 3-5 in the Task 1 report) examines roadway alignment for 
fatal vs. all run-off-road crashes. 

Table 4-1: Roadway alignment: fatal vs. all run-off-road crashes 

Roadway FARS GES 
Alignment 

Fatal Crashes % Fatal Crashes All Crashes % of All Crashes 

Straight 7,653 57.3 857,296 71.1 

Curve 5,665 42.4 294,72 1 24.4 

Unknown 29 0.2 53,816 4.5 

Total 13,347 99.9 1,205,833 100.0 

Moreover, speeding is the most frequent violation charged in association with roadway departures 
on curves (10.2 percent), according to the General Estimates System (GES 1992) data. When 
charges of reckless driving are included, this percentage goes up to 14.3 percent. This indicates 
that unsafe driving acts when approaching curves are an important cause of roadway departure 
crashes. Table 4-2 (originally Table 5-13 in the Task 1 report) presents data showing violations 
charged by horizontal alignment. 

Table 4-2: Violations charged by horizontal alignment 

Violations Charged 

Straight 

Horizontal Alignment 

Curve Unknown 

None I 56.4 1 57.8 1 57.3 1 

Alcohol or Drugs 8.5 8.1 4.8 

Speeding 5.2 10.2 6.7 

Alcohol or drugs & speeding I 0.8 1 1.7 1 0.7 1 

Reckless Driving I 3.4 1 4.1 1 2.2 1 

Suspended/Revoked License 0.4 0.4 0.0 

Failed to yield Right-of-way 0.2 0.0 0.0 

Ran signal/stop sign I 0.2 1 0.0 1 0.2 1 

Hit and Run 10.3 4.2 11.2 

Other/Unknown 14.6 13.4 16.8 
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The detailed clinical analysis of 200 NASS cases conducted for Task 1 also indicates that exces- 
sive speed, particularly associated with curves, is a frequent cause of roadway departure crashes. 
Total of 58.1 percent of the crashes in the clinical sample studied occurred on curved roadway 
segments. See Table 4-3 (originally Figure 5-12 in the Task 1 report). 

Table 4-3: Roadway alignment in SVRD crashes - CDS data (weighted %) 

I Horizontal Alignment * 

I Curve Left I 16.2 1 

I Curve Right I 41.9 1 

I Straight I 41.9 1 

Total ) 100.0 1 

The clinical analysis also indicates that excessive speed is the single largest causal factor, 
accounting for 32 percent of all roadway departure crashes. Table 4-4 (originally Table 5-33 in the 
Task 1 report) shows that 38.7 percent of all SVRD crashes on curves are caused by excessive 
speed, indicating that excessive speed is overrepresented as a causal factor on curves as compared 
with the entire population of SVRD crashes. 

Table 4-4: Causal factor by horizontal alignment 

Causal Factor Horizontal Alignment 

Straight Curve 

Driver Inattention 16.9 7.7 

Driver Relinquished Steering Control 16.0 24.8 

Evasive Maneuver 20.0 10.8 

Lost Directional Control 16.9 15.0 

Vehicle Failure 4.1 3.2 

Vehicle Speed 26.1 38.7 

Total 100.0 100.0 

Based on these ‘Task 1 findings, the project team determined that a system which could warn the 
driver of excessive speed for the upcoming road segment might form an effective roadway depar- 
ture countermeasure. 

4.1 Functional Goals 

In order to concretely specify the actions a run-off-road countermeasure must perform in order to 
prevent SVRD crashes, the project team developed a set of “functional goals” in the Task 2 effort. 
There were six functional goals identified for an excessive speed through curve warning system. 
They are: 
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1. Monitor vehicle dynamic status to determine current vehicle speed 

2. Determine geometric characteristics of upcoming road segment 

3. Determine vehicle position/orientation relative to roadway 

4. Detect degraded roadway conditions 

5. Process data to determine acceptable speed for approaching roadway segment 

6. Present phased alarm to driver of roadway departure danger due to excessive speed for 
approaching roadway segment 

The rest of this section describes the results of experiments and analyses conducted on the first 
five of these functional goals, those involving the sensing and algorithm for a curve speed warn- 
ing system. The sixth goal involves the driver interface, and is discussed in Volume II of this 
report on the Iowa driving simulator experiments. 

4.2 Goal 1: Monitoring Vehicle Dynamic Status 

For an excessive curve speed warning system, two important vehicle state parameters to be deter- 
mined are vehicle speed and vehicle acceleration/deceleration. Both of these can be obtained from 
a variety of sensors in a relatively easy and cost effective manner. 

4.2.1 Vehicle Velocity 

Most vehicles equipped with the cruise control provide an electronic signal that represents the 
vehicle’s speed and this signal can be integrated into a countermeasure system. Encoders mounted 
on an axle of the drive shaft can also be used to measure the velocity. Even though these two 
methods are straightforward to implement, they are affected by tire inflation pressure and temper- 
ature, and are sensitive to calibration methods used. Accuracies of better than 0.5 percent are pos- 
sible, but more typical accuracies are on the order of 3-5 percent, resulting in an error of 
approximately l-3 mph at normal driving speeds. 

A Global Positioning System (GPS) receiver can calculate the velocity based on doppler shift cal- 
culations. Most available GPS receivers provide this information. The GPS velocity estimates are 
more accurate than the previous methods, with an accuracy of +-0.02mph at steady rate condi- 
tions without Selective Availability (Trimble SV6 Manual). This method has the added advantage 
that the required GPS receiver will probably be already available, since as will be seen, it provides 
an effective method for estimating vehicle position for functional goal 3. It also requires no 
mechanical hardware or physical connections to the vehicle. However this method of speed esti- 
mation suffers from the same “dropout” problem as position estimation based on GPS. Therefore 
some combination of mechanical and GPS-based velocity measurement will probably provide the 
most accurate and reliable vehicle speed estimate. 

4.2.2 Vehicle Acceleration/Deceleration 

While the velocity information gives a snapshot of the vehicles’s state, acceleration/deceleration 
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estimates provide the instantaneous trend. For example, if the countermeasure system knows that 
the vehicle is decelerating at a rapid rate, then it can infer that the driver is attentive and that he is 
taking a corrective action, which in turn can be used to adjust the warning threshold. 

Accurate acceleration/deceleration can be obtained either by differentiating the velocity input or 
by installing a low cost accelerometer. 

4.2.3 Implementation and Test Results 

In the curve warning system developed and tested as part of Task 3, velocity estimates are 
acquired from a Trimble SV6 GPS receiver. It provides velocity estimates once per second. The 
team conducted experiments to verify the accuracy claims for the SV6 unit. The Navlab 5 testbed 
vehicle was driven repeatedly over a measured mile using the cruise control to maintain a con- 
stant velocity (60 mph). The time it took to traverse this distance was measured, and the vehicle’s 
velocity was calculated by dividing the distance by the elapsed time. The computed and GPS 
reported velocities were then compared. The results indicate that the GPS velocity estimate accu- 
racy is better than one mile per hour (mean velocity error of 0.82 mph). For more details on the 
GPS receiver itself, see Appendix A. For more details regarding the availability of the GPS data 
required to estimate velocity, see Section 4.4. 

4.3 Goal 2: Determine upcoming Road/Curve Geometry 

Knowledge of the geometric characteristics of upcoming road segment is a prerequisite for esti- 
mating the safe vehicle speed for traversing that segment. The geometric information required 
includes super-elevation, vertical alignment (grade) and curvature of the road segment. These can 
be obtained either by direct (on-the-fly) measurements, from a roadside transponder, or by 
extracting them from a pre-compiled map database. 

4.3.1 Direct Measurement 

One potential way to directly sense the upcoming road geometry is to use a vision-based system 
that analyses the scene ahead and extracts the necessary information. But to reliable estimate the 
curvature using a vision based system is very difficult because of possible occlusions and the large 
lookahead distances required. Also, there is no accurate way to directly sense the superelevation 
or vertical alignment of a road segment ahead of the vehicle. 

4.3.2 Transponders 

The countermeasure recommended in [ 151 for preventing excessive speed crashes is an infrastruc- 
ture-based transponder systems. These beacons would be located at curves, and broadcast to 
upcoming vehicles the safe travel speed for negotiating the curve. A simple onboard system 
would receive this speed advisory, and sound an alarm if the driver is approaching the corner at a 
speed in excess of this recommendation. While potentially effective, such a system has the draw- 
back of requiring extensive modification of the existing roadway infrastructure to deploy these 
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beacons. From our Task 1 analysis, it is apparent that most curve related crashes occur on rural 
roadways, a domain in which it would be difficult to deploy and maintain the required beacons, 
due to the large number of roadway miles, and due to the variety of local jurisdictions with 
responsibility for maintaining rural roadways. 

4.3.3 Commercial Map Databases 

A third alternative for estimating the geometry of the upcoming road segment is to use a commer- 
cial digital map containing the required information, For example, Etak Inc. has detailed, com- 
puter readable digital maps covering the entire US. In urban areas, these maps are claimed to have 
+- 13m accuracy from the center-line of the road. In other words, the map’s reported latitude and 
longitude for the center of a particular intersection will be within 13m of the actual latitude and 
longitude (See Figure 4- 1). 

Figure 4-1: Sample Etak map data 

4.3.4 Custom Built Maps 

Commercial maps are digitized at a relatively coarse resolution. All the curves are represented 
with a series of straight line segments instead of using higher order curve segments. This is prima- 
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rily done to limit the size and complexity of the database. With advances in computing, storage 
and representation techniques, we believe that future databases will be more accurate and will 
have much finer resolution. 

For an excessive curve speed countermeasures system to properly estimate the safe vehicle speed, 
the grade and superelevation information about the road segment ahead are very important. Even 
though the current commercial map databases do not contain these information, it is not very dif- 
ficult to collect and record the superelevation and vertical alignment data for specific road net- 
works, This can done by installing an inexpensive roll/pitch sensor and recording the values as the 
data collection vehicle traverses those roads. This does require traversing each road once to col- 
lect this information. If curve warning systems were to achieve widespread deployment, it is 
likely that commercial map vendors would include this information in their map databases. 

4.3.5 Implementation and Test Results 

The project team acquired digital maps databases of several areas, including Allegheny County, 
PA and Washington, DC from the Etak, Inc. These databases are very large and contain much 
more information than it is needed for a an excessive speed through curve countermeasures sys- 
tem. The maps were reduced to a manageable size using scripts to extract and reformat the impor- 
tant information from these databases. 

In addition to Etak maps, the team built custom maps of selected roads in the Pittsburgh area by 
driving over them once and recording the relevant information. Curve warning experiments were 
later done on these roads. One important advantage of this method over using a commercial map 
database is that the custom maps could be built with much higher resolution than is available in 
the Etak maps. 

The maps generated for the curve warning tests did not contain vertical alignment information. 
This data will be included in future experiments. Also, instead of the actual values for supereleva- 
tion, these tests used estimated values. This section describes tests conducted to assess the accu- 
racy of available digital maps. 

4.3.5.1 Combining ETAK Map Database and GPS Position Estimates 

As the first step towards a system for warning of excessive speed through curves, we combined 
the ETAK map database with the Global Positioning System (GPS) receiver into a moving map 
display. The display shows the test vehicle’s current location as it moves (See Figure 4-2). The red 
dots on the map represent the vehicle’s trajectory as estimated by the GPS system over an one 
mile path. 

Several characteristics about the GPS performance can be noted from Figure 4-2. First, the trajec- 
tory is locally smooth, with very few discontinuities. The GPS did exhibit some dropouts, and a 
corresponding discontinuity in the position estimate, when driving in so-called “urban canyons” 
where buildings occluded the satellites. However, this is probably not a substantial problem, since 
the Task1 analyses for this program indicate that few roadway departure crashes occur in this type 
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of environment. 

While the local position estimates from the GPS are consistent, there remains fairly significant 
relative error between the GPS reported position and the map database. This error is evident in 
Figure 4-2 as an offset between the vehicle’s path and the road being traveled, To better quantify 
this error, and determine whether it results from errors in the map or the vehicle position estimate, 
the following experiments were conducted. 
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Figure 4-2: Moving map display system 

4.3.5.2 Accuracy of Commercial and Custom Map Databases 

We conducted a set of experiments to measure the accuracies of the Etak and custom built map 
databases. In these experiments, the Navlab 5 test vehicle was driven twice over a 1OOkm route 
around Pittsburgh while recording the vehicle’s latitude and longitude, as reported by a Trimble 
SV6 GPS receiver, in differential mode. The details of the differential GPS implementation and 
its accuracy will be discussed in Section 4.4.3. The important characteristic of the differential 
GPS for this experiment is that it can provide an estimate of the vehicle’s latitude and longitude to 
within +- 6m of ground truth. 

The selected route consisted of various types of roads and terrains including downtown driving 
with tall buildings on both sides of the road, interstate highway driving with frequent overpasses 
and rural driving with nearby hills and thick overhanging trees. The route followed, overlaid on 
the Etak map of Pittsburgh, is shown as the thick red line in Figure 4-3. 
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Figure 4-3: Etak map of 100 km test run 
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We extracted the geometric data for the corresponding roads along this route from the Etak map 
database and compared it with the more accurate map generated using differential GPS to deter- 
mine the accuracy of the Etak map. The mean difference between the nearest road point in the 
Etak map and the position reported by the differential GPS during this test was 16.98m, with a 
standard deviation of 11.77m. As will be seen in the next section, approximately 6m of this 
16.98m disagreement can be attributed to inaccuracy in the GPS position estimate, The remaining 
1 lm discrepancy is due to inaccuracy in the Etak map. Note that these results are consistent with 
accuracy Etak claims for its map of +-13 meters. 

A histogram representing the distribution of the discrepancies between the Etak map and the map 
created using differential GPS is provided in Figure 4-4. Note that the vast majority of points 
reported by the GPS fall within 40 meters of the corresponding point on the Etak map. There are a 
few points where there was a large discrepancy between the GPS data and Etak map data. Some 
of this discrepancy could be have been caused by the GPS receiver tracking less than four satel- 
lites and thus reporting inaccurate position data. The number of satellites tracked during the cre- 
ation of the GPS map, and the effect this variability has on map accuracy will be discussed in 
more detail in the section 4.4. 
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Figure 4-4: Distribution of discrepancies between Etak map and DGPS map 
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4.3.5.3 Curvature Estimation using the ETAK Map Database 

A curve speed warning system must know the curvature of the upcoming road segment in order to 
calculate the safe speed. The most straightforward method for obtaining this data would be to 
store it in the map and read it back as the vehicle approaches a curve. Unfortunately, road curva- 
ture is not an attribute currently stored in the Etak maps. However, it is possible to compute the 
road curvature from an Etak map. The radius of an imaginary circle that passes through three 
points from the map, represents the approximate curvature of the road at the vehicle’s current 
location. One of the three points considered is the point of projection of the current vehicle loca- 
tion on to the nearest Etak road segment. The other two points are located an equal distance ahead 
and behind the vehicle along the current road segment. For the following experiment, the distance 
considered was the distance the vehicle would travel in three seconds at the current velocity. 
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Figure 4-5: Curvature data extracted from Etak and custom map databases 
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To determine how accurately road curvature can be calculated from the Etak map, the project 
team conducted the following experiment. As the test vehicle was driven through a particular net- 
work of roads, the curvature values were estimated both from Etak map data and from a densely 
built custom map data with 15 meter interval between data points. Figure 4-5 shows curvature 
information obtained from these two sources. While they match closely in most cases, there are 
places where the disagreement was quite large. 

Figure 4-6 shows the histogram of differences in radius of curvature obtained using the above two 
methods. If the radii of curvature estimated by both these methods were above 20OOm, they were 
assumed to be in total agreement irrespective of the actual difference, since road segments with 
such large radius of curvature can be considered straight for purposes of a curve warning system. 
The curvature estimated from the Etak map data was lower than the curvature estimated from 
densely built custom map data in majority (67 percent) of the cases. It implies that Etak map data 
generally reports a shallower curve when compared to the custom map data. The mean difference 
in curvature obtained from these two sources was 62.27 percent, which is quite large. This can be 
attributed mostly to the coarseness of the Etak data although improvements in the curvature calcu- 
lation technique might improve the figure somewhat. 

Figure 4-6: Histogram of curvature difference between Etak map and recorded map 

This conclusion is supported by Figure 4-7, which shows the histogram of lengths of Etak road 
segments for a typical network of roads in Pittsburgh and surrounding areas. The type of roads in 
this sample include interstate highways, primary state highways, subsidiary state highways, arte- 
rial roads and collector roads. These segments lengths correspond to the distance between adja- 
cent road points in the Etak map. Note that the mean distance between points is 116.4 meters and 
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the maximum distance is over 1000 meters. This is clearly too high to support an effective longi- 
tudinal countermeasure. Further experiments need to be conducted to determine the minimum 
map resolution required to support a curve speed warning system. 

Figure 4-7: Histogram of lengths of Etak road segments 

4.4 Goal 3: Determine Vehicle Longitudinal Position Relative to Curve 

In order to warn or alert the driver of excessive speed at the appropriate time as he approaches a 
curve, a countermeasure system must accurately determine the distance to the upcoming curve. 
The system should also be able locate the vehicle on the correct road segment in places where 
there are dense network of roads and cross roads. There are several potential methods for deter- 
mining the vehicle’s location, each of which are discussed below. 

4.4.1 Direct Measurement 

One possible means for determining the vehicle’s position relative to a curve is to sense it directly, 
for example by using a machine vision system. While theoretically possible, this approach would 
be extremely difficult due to the long lookahead distance required (often several hundred meters), 
and because the view of the curve is often obstructed during the vehicle’s approach. 

4.4.2 Transponders 

As discussed in Section 4.3.2, transponders located at curves could be employed to broadcast 
information to an approaching vehicle. By measuring the strength of the signal reaching the vehi- 
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cle, it should be possible to determine the distance between the vehicle and the transponder, and 
therefore the distance to the curve. 

This approach would suffer from the same drawbacks described earlier for transponders- namely 
high deployment and maintenance expense. Another difficulty associated with this technique is 
the need for multiple transponders per curve to overcome occlusion. Finally, on particularly curvy 
sections of road there is the danger of interference between neighboring transponders. 

4.4.3 GPWDGPS based vehicle location 

GPS (Global Positioning System) is probably the most promising technology currently available 
for vehicle position estimation. There is strong commercial interest in this area and many organi- 
zations are involved in active research perfecting this technology. While there are some potential 
problems with GPS, like dropouts due to satellite occlusion, considerable effort is currently 
underway to increase the utility of GPS for various ITS applications. Advances being made in dis- 
ciplines such as aviation and surveying are also advancing the state-of-the-art in GPS technology. 
The next section presents a brief overview of the GPS technology and its capabilities. 

4.4.3.1 GPS Technology 

GPS is a global, all weather, 24-hour, satellite-based navigation system. At the heart of GPS are 
the 21 satellites placed in circular orbits at an altitude of 20,200 km. Each satellite broadcasts a 
signal which encoding its positions along with other information such as its orbital data, clock 
synchronization correction and status information. A GPS receiver on the ground uses the passive 
ranging concept called pseudoranging to calculate its position and velocity. The receiver acquires 
the satellite signals and measures pseudoranges to the satellites. From,this pseudorange informa- 
tion, it can determine its position by converting the ranges to a point through triangulation. Posi- 
tional accuracy of between 10 cm to 100 meter is attainable, depending on the type of receiver 
used, antenna dynamics, the mode of operation and the processing techniques employed by the 
receiver. 

The accuracy of single GPS receiver is affected by errors from various sources. Examples 
include: 

l Satellite orbit error 

l Satellite clock error 

l Signal path error - Ionosphere 

l Signal path error - Trophosphere 

l Receiver multipath error 

l Receiver delay error 

l Selective availability (intentional degradation of signals by DOD) etc., 
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Because of these error sources, the positional accuracy of a typical commercial grade GPS 
receiver is on the order of 50-100 meters. 

With this level of accuracy, there is a significant potential for false alarms from a curve warning 
system, This could occur when the countermeasure underestimates the distance to the upcoming 
curve, and falsely concludes the vehicle is travelling too fast. There is also the danger of missed 
alarms, when the system overestimates the distance to the upcoming curve, and mistakenly judges 
the vehicle’s current speed to be safe. 

4.4.3.2 DGPS Technology 

To improve the accuracy of GPS, the technique of differential GPS has been developed. Differen- 
tial GPS is based on the principle that any two receivers in the same general region of the Earth’s 
surface will make approximately the same errors in measuring satellite signals, since they share 
the same major sources of error. These errors can be compensated for by placing a “reference” 
receiver at a fixed, surveyed location and measuring the aggregate effect of these errors. When 
this aggregate error information is provided to a mobile receiver, the mobile receiver can refine its 
position estimate, significantly improving its accuracy. 

4.4.3.3 Current and Expected GPS Capabilities and Performance 

The report on Carrier Phase GPS prepared by SRI International for FHWA [33] presents a good 
summary of the state-of-the-art in GPS technology and its trends. Table 4-5 summarizes the infor- 
mation in that report regarding the current and anticipated capabilities of GPS technology. As can 
be seen from the table, substantial improvements in both price and performance of GPS receivers 
are expected, making GPS a promising technology for ITS applications. 

Table 4-5: Current and anticipated capabilities of GPS receivers 

Positional Accuracy with DGPS - Code 

CURRENT ANTICIPATED 

lm 0.5 m 

Positional Accuracy with DGPS - Carrier l-10 cm 

Velocity Accuracy with DGPS 0.02 m/s 

Attitude Accuracy (l-m antenna spacing) 0.1 deg 

Update Rate l-10 hz 

1-5 cm 

0.01 m/s 

0.1 deg 

50- 100 Hz with 
Inertial Ref Unit 

Size 

cost 

2.5-300 in3 l-10 in3 

$150 - $35,000 $75-$1000 
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4.4.3.4 Implementation and Test Results 

In order to evaluate the performance of currently available commercial grade GPS receivers, we 
acquired and equipped our testbed vehicle, Navlab 5, with a low cost ($600) Trimble SV6 GPS 
[35]. It is a six channel receiver with capability to track up to 8 satellites. The positional accuracy 
is specified as 25-100 m without DGPS and better than 10 m with DGPS. The SV6 also provides 
an estimate of velocity, with a claimed accuracy of 0.02 m/s with DGPS. It has an update rate of 1 
Hz. 

We conducted a series of experiments to test this GPS system.The first of these experiments was 
designed to measure the steady state accuracy of the GPS system without differential correction. 
In this experiment, the receiver was placed in a fixed location and the position data was collected 
over a 12 hour period. There was no differential (DGPS) input to the receiver. The largest excur- 
sion during the 12 hour period was approximately 45m (see Figure 4-8), supporting the manufac- 
turers claim of 20-1OOm accuracy. 

While these results were encouraging, this level of accuracy is too low to effectively support a 
curve warning system. A 45m error in a countermeasure’s estimate of the distance to an upcoming 
curve would result in a two second error in warning onset time if the vehicle is traveling at 50 
mph A warning two seconds early would almost certainly be perceived by the driver as a false 
alarm. A warning two seconds late would probably not allow the driver sufficient time to deceler- 
ate the vehicle to a safe speed before entering the curve. 

Figure 4-8: Position estimates from stationary GPS receiver 
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4.4.3.5 Differential GPS Tests 

- 

In order to overcome the problem of position estimation error inherent in stand-alone GPS receiv- 
ers, we tested the Trimble SV6 GPS receiver with differential GPS input from two different sys- 
tems: Omnistar and Navstar. These two DGPS systems differ significantly both in processing 
techniques and implementation. 

4.4.3.5.1 Stationary Omnistar DGPS Tests 

The Omnistar system is a nationwide differential GPS broadcast system commercially available 
from John E. Chance dz Associates. It has ten base stations located throughout the US and these 
stations provide the differential corrections. The corrections are uplinked to a satellite and broad- 
cast back to earth-based downconverter systems, which reformat the data and supply differential 
corrections in a format readily accepted by most GPS receivers, including the Trimble SV6. 

Figure 4-9 shows the performance of the SV6 with DGPS corrections from the Omnistar system 
while the vehicle was stationary over a 7 hour period. The accuracy is on the order of +-4m. 
Though these tests showed the Omnistar to be a convenient and accurate source of DGPS correc- 
tions, there were several problems with the system. First, the Omnistar’s performance was signif- 
icantly degraded in urban areas, where the visibility of the Omnistar satellite was occluded by 
buildings. Also, the Omnistar system is currently quite expensive, $6000 initial cost plus $4000 
per year. The primary advantage of the Omnistar is that the hardware configuration is very conve- 
nient. The unit is simply mounted on the exterior of the vehicle, and connected directly to the GPS 
receiver. Unlike the Navstar system to be described next, the Omnistar does not require a direct 
communication link between the basestation and the mobile receiver, since the differential correc- 
tions come directly from an additional satellite. 

Figure 4-9: Position estimates from stationary GPS receiver with Omnistar DGPS 
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4.4.3.5.2 Stationary Navstar DGPS Tests 

We also acquired a $3000 Navstar-XRSM GPS receiver system with differential output capability 
and used it as a differential basestation. The team mounted the basestation receiver on the roof of 
a Carnegie Mellon building at a surveyed location. Communication between the basestation and 
the SV6 receiver on the Navlab 5 test vehicle was established using a cellular phone and modem. 
Figure 4-10 shows the performance of SV6 with DGPS corrections from the Navstar unit over a 
one hour period while the vehicle was stationary. Its accuracy (+- 3 meters) appears to be slightly 
better than the Omnistar system. 

Figure 4-10: Position estimates from stationary GPS receiver with Navstar DGPS 

4.4.3.5.3 Broadcasting DGPS over FM Subcarrier 

The DC1 Inc. (Differential Corrections Inc.) broadcasts differential signals through the FM Sub- 
Carrier of the commercial FM radio broadcasts. At this time, this method appears to be the least 
expensive way to receive DGPS signals, at $200-400 per year. This service is currently available 
from DC1 in over 50 cities around the country. Unfortunately, Pittsburgh is not one of them. Over 
several months of negotiations with DC1 and a local radio station, the project team attempted to 
bring this service to Pittsburgh. This would have provided DGPS signals that could improve the 
accuracy of the Trimble GPS system to the range of l-5m, according to specifications provided by 
DCI. Unfortunately, for commercial reasons these efforts did not succeed in bringing this service 
to Pittsburgh, so this source of differential GPS corrections was not tested. 
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4.4.3.5.4 Tests with Long Baseline DGPS 

One potential problem with differential GPS is that the greater the distance between the basesta- 
tion receiver and the mobile receiver, the more the important factors affecting error in the two 
receivers differ. This should result in degraded position estimation accuracy. In order to test this 
effect, a set of experiments was conducted to evaluate the performance of differential GPS with a 
very long baseline between the vehicle and the basestation. 

Specifically, the testbed vehicle was driven around the 7.5 mile oval test track at the Vehicle 
Research and Test Center (VRTC) in East Liberty, Ohio while the Trimble SV6 GPS unit received 
differential corrections from the Navstar basestation in Pittsburgh. The distance between the base 
station and the mobile receiver was over 200 miles in this test. There appeared to be no significant 
degradation in GPS accuracy under these conditions with an apparent mean error of less that 5 
meters (See Figures 4-11 and 4-12). This was somewhat of a surprising result, since it was 
expected that differences in atmospheric conditions, and differences in the visible satellites 
between the base station and the mobile unit would result in degraded performance. This results 
supports the viability of a curve warning countermeasure, since it suggests that sufficient position 
accuracy can be achieved without heavy reliance on the infrastructure in the form of closely 
spaced differential basestations or roadside transponders. 

Figure 4-11: Data from long baseline DGPS test 
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Figure 4-12: Detailed data from long baseline DGPS test 

4.4.3.6 GPS Latency Tests 

Another potential problem, particularly with inexpensive GPS receivers, is latency. With differen- 
tial corrections, these receivers can accurately estimate the vehicle’s location, but because of pro- 
cessing delays this estimate actually corresponds to the vehicle’s location up to several seconds 
earlier. As a result, the vehicle may be significantly closer to the upcoming curve than is indicated 
by the GPS, possibly resulting in a warning too late for the driver to respond. In order to quantify 
the latency in the Trimble SV6 GPS receiver with differential corrections from the Navstar, we 
conducted the following experiment. 

The Navlab 5 testbed vehicle was repeatedly driven in both directions along a straight stretch of 
road at a constant speed of 45 mph. Each time the vehicle passed a particular point (plotted as 
point [O,O] in Figure 4-13) the GPS estimate of vehicle position was recorded. As can be seen 
from Figure 4-13, the GPS position estimate lagged behind the vehicle’s actual position by 20 to 
40m. This corresponds to a 1 to 2 second latency, since the vehicle was traveling at 20 m/set (45 
mph). 

It is important to note however, that this latency appears to be quite regular and predictable. This 
regularity allowed the curve warning countermeasure developed for this task to compensate for 
the latency by simply assuming that the vehicle is actually 1.5 seconds closer to the upcoming 
curve than is reported by the GPS system. In higher quality GPS receivers currently available 
(and in future inexpensive GPS receivers) this latency problem should not be an issue, since these 
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systems process faster, reducing the latency, and provide a timestamp with each position estimate, 
allowing a countermeasure to precisely determine the vehicle’s current position. 
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Figure 4-13: Data from GPS latency experiment 
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Figure 4-13: Data from GPS latency experiment 

4.4.3.7 Tests of GPS Satellite Tracking Performance 

A third problem commonly attributed to GPS is the difficulty these systems have in accurately 
estimating vehicle position when view of the satellites is occluded by buildings, overpasses, 
nearby hills or overhanging trees. The project team conducted several experiments to quantify the 
effects of reduced visibility to the GPS satellites. 

The first test was to determine how much of an impact various visual occlusions have on the abil- 
ity of GPS receivers to track satellites. This test involved driving the Navlab 5 test vehicle twice 
over the same 1OOkm route through urban, suburban and rural areas depicted in Figure 4-3 over 
the period of several days. During each traversal, the number of satellites being tracked by the 
GPS was recorded. Results from these tests are provided in Table 4-6. As can be seen from this 
table, satellite tracking was quite reliable with the Trimble SV-6 GPS. Over both traversals, the 
GPS was unable to track 3 or more satellites less than 0.2 percent of the time. Some of this “drop- 
out” occurred when driving through downtown Pittsburgh, and some of it occurred when travel- 
ing along rural roads with extremely dense overhanging trees. For more than 99.8 percent of two 
trips, the GPS maintained lock on a sufficient number of satellites to allow it to provide an esti- 
mate the vehicle’s position. The accuracy of these estimates are discussed in the next section. 

Table 4-6: GPS satellites tracking statistics 

Satellites Being Tracked 6 5 4 3 <3 

Run 1 (percent) 45.8 31.9 18.6 3.4 0.2 

Run 2 (percent) 14.5 55.3 23.8 6.3 0.1 

4.4.3.8 Extended Tests of GPS Accuracy 

The final set of tests involved quantifying the accuracy of differential GPS when driving in natu- 
ralistic environments. The same 1OOkm test route was traversed twice over several days. During 
each traversal the latitude and longitude reported by the SV6 with Navstar differential corrections 
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was recorded at one second intervals. The estimated position of the vehicle at each point along the 
route was compared between the two traversals, to determine the consistency of the DGPS posi- 
tion estimates. The distribution of the discrepancies between the position estimates during the two 
traversals is plotted as a histogram in Figure 4- 14. 
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Dislmcc (nmtcrs) 

Figure 4-14: Histogram of difference between curvatures from Etak recorded maps 

The histogram shows that for an overwhelming majority of the two runs, the two vehicle paths 
reported by the GPS were within lo-15m of each other. The mean discrepancy between the posi- 
tion estimates on the two traversals was 6.24m, with a standard deviation of 11.05m. This results 
supports the manufacturer’s claim that with the SV6 is able to achieve IOm accuracy when cou- 
pled with differential corrections. Note that this level of agreement between two recorded paths 
does not prove that the SV6 was providing accurate ground truth estimates of latitude and longi- 
tude, since there could be a consistent offset in the system. However for a curve warning system, 
absolute accuracy is not particularly important. What is important is the repeatability of the posi- 
tion estimates over time, and for this purpose comparing two paths recorded over several days is 
an appropriate test. 

As the histogram in Figure 4-14 indicates, there were a few large discrepancies between the posi- 
tion estimates during the two traversals, represented by the spike at 80m (the maximum error 
allowed). These were primarily caused by large jumps in the GPS position estimate when driving 
in downtown Pittsburgh. The problems GPS have in these so called “urban canyons” is depicted 
in the Figure 4-15. It shows a close-up of the two recorded paths while the vehicle traveled 
through downtown Pittsburgh. There were several large jumps in the position reported by the 
GPS, corresponding to times when there were not enough satellites visible to get an accurate esti- 
mate. Fortunately, the Task 1 analysis conducted for this program indicates that few roadway 
departure crashes occur in this type of extremely built up environment. On more typical stretches 
of suburban and rural roadways, The GPS position estimates were quite consistent between the 

84 



two runs, as is visible in Figures 4- 16 through 4- 19. Figures 4-20 and 4-2 I show repeated travers- 
als of a three mile loop of interstate highway between two exits. Note that it is possible to deter- 
mine which side of the divided highway the vehicle is traveling along from the GPS position data. 
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Figure 4-15: Position data near downtown area 
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Figure 4-16: Position data near a sharp curve 
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Figure 4-17: Position data near a cloverleaf 

Figure 4-18: Position data on a straight road segment 
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Figure 4-19: Position data near a shallow curve 
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Figure 4-20: Data collected during repeated traversals of a divided highway 
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Figure 4-21: Data collected during repeated U-turns at divided highway exit 

4.4.4 Implications of Results 

The implications of the preceding experiments for a curve warning system are significant. They 
suggest that a countermeasure with a differential GPS and a digital map should be capable of 
accurately determining both the distance to and severity of an upcoming curve. At 50 mph, the 
variability in warning onset time due to inaccuracies of the GPS and map would be in approxi- 
mately 0.5 seconds given an accurate manually recorded map, or +-1.25 seconds given a map 
with the accuracy of the Etak one tested. The variability in the former condition would probably 
not even be noticed by the driver, and could certainly be compensated for using a slightly earlier 
warning onset to ensure the driver has sufficient time to slow the vehicle before entering the 
curve. The +-1.25 sec. variability when using commercially available maps could potentially 
cause driver acceptance/performance problems, particularly if coupled with the uncertainty in 
road curvature reported earlier when using Etak maps. A warning triggered one second earlier 
than is required due to inaccuracies in the countermeasures estimate of position or road curvature 
could potentially annoy the driver, and a warning triggered one second late could potentially leave 
the driver insufficient time to slow the vehicle before entering the curve. In the Task 4 mathemat- 
ical modeling effort, the potential impact of these inaccuracies will be investigated analytically. 

4.5 Goal 4: Detect Degraded Roadway Conditions 

The Task 1 analysis conducted for this program indicates that degraded pavement conditions in 
the form of water, snow or ice are present in 35.5 percent of roadway departure crashes (Source: 
1992 GES). The clinical analysis conducted for Task 1 indicates that degraded pavement condi- 
tions are an important causal factor in 16.0 percent of all run-off-road crashes. Thus degraded 
roadway conditions play an important role in roadway departure crashes. In particular, the physi- 
cal condition of the roadway surface is an important factor determining the safe travel speed for 
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negotiating a curve. The influence of degraded conditions can be divided into two components: 

l Conditions that are inherent to the physical pavement itself. Examples include roadway 
microstructure, roadway macrostructure, potholes, shoulder, roadway markings etc. 

l Transient conditions such as rain, snow, ice or oil on the pavement 

These roadway surface conditions affect the controllability of the vehicle by influencing the lat- 
eral and longitudinal coefficient of friction between the vehicle’s tires and the pavement. To effec- 
tively use this information in a SVRD type countermeasures system, a countermeasure not only 
needs to sense these conditions, but also to translate the acquired information into an estimate of 
the safe travel speed. The team’s investigation of this area indicates no commercially available 
systems exists that can readily perform both these functions. The available research literature on 
this area is still very preliminary, and therefore no complete system was identified or acquired for 
testing in this effort. However individual components which might eventually be part of a system 
for real-time detection of degraded pavement conditions have been identified and investigated as 
part of the Task 3 effort. The results of these activities are described below. 

4.51 Infrastructure-Based Sensing of Roadway Conditions 

Technology for roadway condition monitoring can be divided into two categories, infrastructure- 
based and vehicle-based. Several infrastructure-based systems are commercially available. These 
system are primarily used to determine when conditions warrant salting or plowing roads and air- 
port runways during the winter. An example of this type of system is the SCAN system manufac- 
tured by Surface Systems Incorporated. The SCAN system includes sensors mounted below 
ground, on the pavement surface and above the ground. The SCAN system provides the following 
information: 

l Air temperature, dewpoint temperature 

l Surface temperature9 Subsurface temperature 

l Humidity 

l Concentration of chemicals on the road 

l Type (ice, snow, rain) and amount of precipitation on the road 

l Visibility 

l Wind direction and velocity 

The SCAN system not only gives an instant readouts of these values, but also maintain a history 
of the temperature profiles. This information is useful for predicting adverse pavement conditions 
well before they occur. 

The project team arranged with the PA Department of Transportation, a local user of the SCAN 
system, to access the data provided by one of their sensor stations. The project team downloaded 
the data from one station for the month of January 94 (See Figure 4-22). 
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The data includes 8 different variables, recorded every 15 minutes at a monitoring station located 
on interstate I-79 north of Pittsburgh:The first variable is the “status”, which indicates the type 
and amount of precipitation on the roadway. There are three variables indicating the temperature 
of the air, pavement surface, and ground below the pavement. There are also variables indicating 
the concentration of chemicals on the pavement, the dew point, and the relative humidity. 

Clearly, the SCAN system can provide much useful data regarding the current weather and pave- 
ment conditions. The remaining question is how to convert this data into a warning signal that 
would be useful and easy for the driver to interpret. Surface Systems Inc. offers a service called 
SCAN*CAST in conjunction with their sensor systems. SCAN*CAST is a forecasting facility 
specializing in the prediction of pavement conditions. Staffed by professional meteorologists, 
SCAN*CAST issues 24-hr pavement advisories based on data collected from on-site sensors in 
addition to information provided by the National Weather Service. Unfortunately, tests of this ser- 
vice as part of Task 3 were thwarted by the unusually mild winter of 1994-95. The project team 
recommends further experiments be conducted in Phase II and/or III to determine the timeliness 
and reliability of these predictions. 

One advantage of infrastructure-based pavement condition monitoring systems over in-vehicle 
systems (discussed below) is that they can provide advanced warning of slippery pavement, 
before the vehicle actually encounters it. The disadvantage is that the information they provide is 
very localized. For instance, PennDOT currently has only eight SCAN sensor packages in West- 
ern Pennsylvania. They are far to scattered too provide effective coverage. In particular, with this 
type of distributed sensor deployment it is nearly impossible to detect localized conditions, such 
as patches of ice, which often lead to roadway departure crashes. At approximately $35,000 per 
remote sensing station, it is unlikely that dense coverage will be achieved with this type of system 
anytime soon. 

4.5.2 In-Vehicle Sensing of Roadway Conditions 

An alternative approach to the detection of degraded pavement conditions are in-vehicle sensors. 
Though there are several in-vehicle based prototype weather sensors that currently exist, most of 
them are either still in the research stage or have limited functionality. None of them are commer- 
cially available. 

Researchers at Mercedes-Benz in Germany have used a microphone mounted in the wheel well of 
an automobile and analyzed the audio signals to determine if the pavement is wet [ 111. They were 
also able to determine the depth of water by classifying these signals. The IDEAS program of the 
Transportation Research Board and the US Department of Transportation have sponsored several 
research projects to build sensors that can detect ice crystals [3]. The European DRIVE project 
has developed non-contact sensors based on microwave, laser and infrared-based technologies to 
measure wet and icy conditions [7]. These systems are still experimental, and the data they pro- 
vide must still be interpreted to determine the effect the degraded pavement conditions may have 
on the safe travel speed. As is explained below, this interpretation is often extremely difficult. 
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4.5.3 Determining the Coefficient of Friction 

Degraded pavement conditions influence the safe travel speed through their impact on the coeffi- 
cient of friction between the tire and the roadway. The coefficient of friction also varies with a 
number of other factors, including: 

l Vehicle speed 

l Road surface macro and microstructure 

l Tire pressure 

l Tread depth and configuration 

The information available in the technical literature about how to determine the coefficient of fric- 
tion from these parameters is very sparse and inconsistent. The American Association of State 
Highway and Transportation Organizations (AASHTO) recommends that when designing road- 
ways, the assumed side friction factors should be in range of 0.1 (at 70mph) to 0.17 (at 20mph). 
The design of curves as proposed by the AASHTO policy is based on the assumptions that the 
curve is properly spiraled, and that the vehicle tracks the curve as it is designed. Research sug- 
gests both of these assumptions are often invalid [ 1][2][9]. On older stretch of road, curves are 
frequently unspiraled. Also, aggressive drivers tend to track unspiraled curves in a manner that 
produces significantly greater friction demands on the tire/roadway interface than are intended by 
the AASHTO design policy. 

At the same time there is evidence that the AASHTO standards may be overly conservative. Data 
from a study sponsored by the European Organization for Economic Cooperation and Develop- 
ment [28] on the effects of tire tread and water on the roadway is shown in Table 4-7. The data 
shows that available lateral friction varies tremendously with both tire condition and the amount 
of precipitation on the roadway. 

Table 4-7: Lateral friction coefficient for various road/tire conditions 

Lateral coefficient of friction Dry conditions 

Tire with full tread 0.9 

Smooth tire 0.9 

Wet conditions 

20 mph 40 mph 60 mph 

0.8 0.55-0.68 0.20-0.60 

0.6 0.35-0.50 0.15-0.35 

The above data indicates that it may be very difficult to convert the values of important secondary 
factors such as pavement conditions into a coefficient of friction. An alternative approach is to 
infer the coefficient of friction directly by observing the dynamic behavior of the vehicle. Ray 
[29] has shown through simulations that the coefficient of friction can be determined in real time 
using sensors that could reasonably be mounted on a vehicle. Under most conditions, if the vehi- 
cle is maneuvering, the coefficient of friction can be estimated to +-0.05 of the actual’value. 
Briefly, the procedure is to measure tire angles and vehicle accelerations and use a simplified 
vehicle model to infer the tire forces. Then the most likely coefficient of friction is estimated. Of 

, 
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course, this technique provides an estimate of the friction coefficient at the tires’ current location, 
and it is not necessarily a precise indicator of the friction on upcoming road segments. 

While still experimental, this approach to directly estimating the coefficient of friction from vehi- 
cle dynamic behavior shows promise. The major drawback of this approach for a curve warning 
countermeasure is that it requires the vehicle to actually encounter the slippery stretch of pave- 
ment before the danger can be* detected. For a curve warning system, by the time the vehicle 
reaches the slippery pavement, it may be too late for the driver to decelerate sufficiently to avoid a 
roadway departure. An alternative would be to communicate the coefficient of friction from vehi- 
cles which had previously traversed a section of roadway to vehicle’s approaching the section. A 
practical means for communicating this information remains to be worked out. 

4.5.4 Implementation and Testing 

For the integrated countermeasure tests described in Section 4.8, the problem of automatically 
detecting degraded roadway conditions was circumvented by manually providing the system with 
a approximate estimate of current coefficient of friction, based on Table 4-7. Specifically, for tests 
conducted under wet roadway conditions, the coefficient of friction was set to 0.3, and for dry 
conditions it was set to 0.4-0.6. Clearly further research is required, either as part of this program 
or another, to identify and evaluate the most appropriate method for detecting reduced coefficient 
of friction situations. 

4.6 Goal 5: Process data to determine acceptable speed for upcoming road 

Previous sections investigated techniques for acquiring information about the vehicle and road- 
way necessary for estimating the safe speed for traversing an upcoming curve. In this section, the 
algorithm for processing this information to determine the safe speed is investigated. It should be 
emphasized that this algorithm is not based on the posted speed limits, but takes into consider- 
ation the physics of vehicle, the geometry of the roadway and the pavement conditions. It 
attempts to calculate maximum speed at which vehicle will be able to safely negotiate the curve. 

4.6.1 Safe Speed Estimation 

The AASHTO Traffic Engineering Handbook [2] suggests that the following equation be used 
when designing roadways to govern the relationship between the radius of the curve, the vehicle 
speed, the curve superelevation (banking), and the coefficient of friction. 

2 
V 

r = 15(t?+fi 

where: 

Y = radius of the curve (ft.) 
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v = speed of the vehicle (mph) 

e = superelevation of curve (feet/ft. of width) 

f= coefficient of friction between the tire and the road (g) 

Using this equation, the design speed at any point on the roadway can be calculated if the curve 
radius, coefficient of friction and superelevation are known. The AASHTO handbook recom- 
mends using this equation, along with a conservative value for coefficient of friction (around 0.2) 
to determine the speed limit for curves. Solving this equation for v and substituting metric for 
English units, results in the equation: 

V = 3.117$h(e +J) 

where: 

v = Target speed for a particular road point (rn/sec) 

r = Radius of curvature at that point (l/m) 

e = Superelevation at that point (m/m) 

f = Lateral coefficient of friction (g) 

The integrated longitudinal countermeasure system tested in Task 3 (and described in detail in the 
next section) uses this equation to determine the velocity at which it is safe to traverse the upcom- 
ing curve. It uses values for the curve radius r and e extracted from a digital map and a value forf 
provided manually based on current pavement conditions. 

4.6.2 Integrated Longitudinal Sensing and Processing Algorithm 

This section describes the step-by-step processing performed by the complete longitudinal warn- 
ing system developed and tested as part of Task 3. Only the sensing and algorithm aspects of the 
system are presented here. The form and functioning of the various driver interfaces tested are 
presented in Volume II of this report. 

A block diagram depicting the steps of the algorithm are presented in Figure 4-23. The first step is 
to determine the vehicle’s current location (latitude and longitude), using the DGPS system. The 
vehicle’s position on a previously acquired digital map is then determined by locating the road on 
the map which is closest to the current estimate of the vehicle’s position, Starting at this projected 
point, moving in the direction of travel, the geometry of the upcoming road segment is extracted 
from the digital map. At a minimum, this information includes a list of points representing the lat- 
itude and longitude of the lane center over the length of the roadway equivalent to about 6 sec- 
onds of travel time at the current speed. The extracted map data may also include additional 
information such as road curvature or superelevation, if it is available in the map. 

For each point along the upcoming segment of road, the road curvature is calculated (if not known 
explicitly) by fitting a circular arc through three adjacent road points. Using an estimate of the 
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coefficient of friction and superelevation (assumed to be constant for our experiments), the maxi- 
mum safe speed (vt) is calculated for each point along the upcoming road segment using the equa- 
tion in the previous section. 
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Figure 4-23: Excessive speed warning system algorithm 

Next the countermeasure computes the “bounding speed” for the vehicle’s current position. The 
bounding speed (vb) is the maximum speed at which the vehicle can currently be traveling and 
still be able to decelerate at a reasonable rate (assumed to be -0.25g) to be at or below the maxi- 
mum safe speed for each point along the upcoming road segment. 

In more detail, for each point along the upcoming road segment, the bounding speed at the current 
vehicle location is calculated using the following equation: 



where: 

vb = Bounding speed at the current vehicle location (m/set) 

vt = Maximum safe speed for the point being considered (m/set) 

a = Assumed driver deceleration (Typically -0.25g) 

d = Distance from the current vehicle location to the point being considered 

v, = Current velocity of the vehicle (m/set) 

td = Human braking reaction time (assumed to be 1.5 seconds) 

Here, the term (d-v&) represents the effective distance available for the vehicle to slow down 
from velocity v, to the target velocity vt. The bounding speed for the current vehicle location is 
considered to be the minimum of all the bounding speeds for the current location calculated using 
the target speed for all the upcoming road points within the lookahead distance. If the current 
vehicle speed is above the bounding speed, a warning is triggered to alert the driver of the danger. 
The form of this warning is described briefly in the next section, and in more detail in Volume II 
of this report on the Iowa driving simulator experiments. 

4.7 Goal 6:Present phased alarm to driver 

Once the countermeasure determines there is danger of a roadway departure, the final step is to 
interact with the driver to avoid the crash. There are a number of alternative interfaces possible 
for a curve speed warning system, ranging from visual, audible or haptic feedback, to active con- 
trol intervention in the form of automatic braking. Experiments to test several of these alternatives 
are described in Volume II of this report. For the in-vehicle tests of the sensors and algorithms 
described in the next section, a simple audible tone was used to alert the driver of excessive speed 
for the upcoming curve. The tone had a frequency of lOOOHz, and a duration of 0.5 seconds. Once 
the warning tone has been presented to the driver, further warnings were suppressed for the fol- 
lowing five seconds. This was done to limit irritation to the driver, and was based on the assump- 
tion that closely spaced warnings provide little additional information. Tests of this assumption, 
as well as a more thorough analysis of various driver interface alternatives, are provided in Vol- 
ume II. 

In addition to the audible output, the longitudinal countermeasure system developed for in-vehi- 
cle tests contained a graphical user interface, shown in Figure 4-24. It allows the user to modify 
various parameters such a superelevation, side friction coefficient, lookahead distance etc. To 
realistically test the system, the vehicle must be driven at high speeds through curves. To avoid 
this situation, a parameter called speed-factor is used, which artificially inflates the speed at which 
the system believes the vehicle is currently travelling. 

The system has a moving map display system to show the current location of the vehicle (See Fig- 
ure 4-24). The trace of the vehicle is displayed in different colors to indicate whether a warning 
was issued at a particular location. The current velocity and the safe velocity are displayed as hor- 
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izontal bars, which are updated continuously as the vehicle moves. Whenever the length of the 
safe velocity bar is shorter than the current velocity bar, a warning is triggered. 

The system also displays the nearest recorded path or Etak road, the distances to the nearest road 
and other useful information. The interface allows the user to switch between using the Etak map 
database and custom-built map databases. Note that most of the information and functionality 
provided by this interface is diagnostic in nature, and is necessary only for testing and evaluation 
of the system’s performance. A deployed longitudinal countermeasure would probably not require 
a visual display for the driver, and in fact this type of interface was not included in the Iowa driv- 
ing simulator experiments described in Volume II. 
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Figure 4-24: User interface for the longitudinal countermeasure 

4.8 Results of Integrated tests 

The project team implemented an integrated excessive speed through curve warning system based 
on the individual components discussed in the earlier sections. A block diagram of the system is 
presented in Figure 4-25. It employs a GPS and a heading gyro to determine the position, orienta- 
tion and velocity of the vehicle. It uses either the Etak map database, or a custom build map data- 
base, to determine the safe speed for the upcoming road segment, according to the equations 
presented earlier. If the current speed exceeds the safe speed, it triggers an audible alarm. Tests of 
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this system were conducted to determine its performance when all the components tested individ- 
ually were combined into an integrated system. Of particular importance were repeatability tests. 
These tests were performed to ascertain the consistency in onset time of warnings provided by the 
countermeasure. 

VEHICLE STATE 

CURVE WARNING SYSTEM 

Figure 4-25: Longitudinal countermeasure block diagram 

4.8.1 Repeatability of Curve Alert Warnings 

A properly implemented warning system should issue warnings in a consistent manner each time 
the vehicle approaches a curve at too high a speed. To quantify this aspect of countermeasure per- 
formance, the following experiment was conducted. The Navlab 5 testbed vehicle was driven 
repeatedly towards a particular sharp curve at 45 mph. The speed was chosen such that it would 
result in a warning signal. For each approach to the curve, the time of warning onset relative to the 
curve entry was recorded. Table 4-8 shows the recorded times for six of the curve approaches. 
The mean onset time was 3.31 seconds prior to the curve, with a standard deviation of 0.26 sec- 
onds. The maximum difference between onset times was 0.65 seconds, which corresponds to a 
travel distance of approximately 15 meters. To determine the source of this variability, an experi- 
ment was conducted to measure the accuracy of the timing technique. In this experiment, the 
clock was manually started and stopped when the vehicle was passing two different landmarks on 
the side of the road. The maximum timing variation in this experiment was 0.2 seconds, indicat- 
ing a substantial portion of the variation in warning onset time, as measured in the original exper- 
iment, may have been due to timing inaccuracies and/or variations in vehicle speed. 

98 



Table 4-8: Variability of longitudinal countermeasure warning onset time 

I Run # I Time (sec.) I 

I 3.61 

I 2.96 I 

I 3.18 I 

4.9 Summary 

The experiments described in this section indicate that most of the technology exists for a reliable 
system to warn of excessive speed when approaching curves. Differential GPS technology can 
provide accurate and reliable estimates of the distance to an upcoming curve. Commercial digital 
maps, although currently not quite detailed enough, have the potential to provide the necessary 
geometric information regarding curve sharpness and superelevation. Tests of a system that com- 
bines information from GPS and digital maps show that is possible to provide reliable and highly 
repeatable warning signals when approaching curves at excessive speed. 

The biggest missing component for a general longitudinal countermeasure is an effective means 
of measuring degraded road conditions. Infrastructure-based pavement monitoring systems exist, 
but are expensive and provide data that is only valid in a local region. Simulation results of vehi- 
cle-based methods for inferring the coefficient of friction between the tires and the road appear 
promising, however these methods require the vehicle to encounter the degraded pavement before 
it can be detected. Further research is needed before a longitudinal countermeasure capable of 
handling all roadway conditions can be deployed. Fortunately, the Task 1 analysis conducted for 
this program indicates that only 10 percent of run-off-road crashes caused by excessive speed 
occur on snowy or icy roads. The remainder occur on pavement which is dry (64 percent) or wet 
(26 percent). A system that can simply detect whether the pavement is wet or dry has the potential 
to prevent most speed related roadway departure crashes. More detailed analysis of the potential 
effectiveness of longitudinal countermeasures will be conducted in the Task 4. 

The other major uncertainty relating to longitudinal countermeasures is the human component. 
Questions remain about the typical curve negotiation strategy that drivers employ. For instance, 
when do drivers start to slow down on the approach to a curve, how quickly do they decelerate, 
and how much is their behavior affected by environmental conditions? Other questions include 
how will driver’s react to a system that provide an excessive speed warning. The latter question is 
partially addressed in the driving simulator experiments described in Volume II. However, data 
about curve negotiation habits in naturalistic driving situations remains to be gathered. 
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5.0 Summary 

Two important categories of roadway departure crashes were identified in Task lof this program, 
crashes caused primarily by failures in lateral control, and crashes caused primarily by failures in 
longitudinal control. Lateral crashes account for at least 32.8 percent of all roadway departure 
crashes, and typically result from driver inattention, driver incapacitation, and to some extent, 
lose of directional control. Longitudinal crashes account for at least 32.0 percent of all roadway 
departure crashes. These crashes often occur on curves, and are usually precipitated by excessive 
speed for the road geometry or pavement conditions. These includes crashes identified in Task 1 
as being caused by excessive vehicle speed or lost directional control. 

Functional goals were developed in Task 2 for these two crash types. The goals represent actions 
a countermeasure would need to perform in order to prevent each type of crash. In Task 3, the 
effort documented in this report, technology with the potential to fulfill these functional goals was 
identified and tested. While no commercially available countermeasures were identified which 
performed all the functional goals required for either a lateral or a longitudinal countermeasure, 
the project team was able to acquire component technologies for accomplishing most of the indi- 
vidual functional goals. The team was able to combine these components into working prototypes 
of both lateral and longitudinal countermeasures for testing. 

Three types of tests were performed on the individual components and the complete countermea- 
sure systems - laboratory tests, in-vehicle tests, and driving simulator tests. The laboratory tests 
were preformed primarily on the sensing components to measure sensing accuracy and repeatabil- 
ity. In-vehicle tests were performed to tests sensing and processing algorithms under realistic con- 
ditions. The driving simulator tests were conducted primarily to measure the performance of the 
driver interface components of the lateral and longitudinal countermeasures. The results of the 
laboratory and in-vehicle tests of the sensing and processing technology are described in Volume 
I of this report, and the results of the interface experiments on the driving simulator are presented 
in Volume II. 

5.1 Lateral Technology Tests 

The most challenging functional goal for a countermeasure to prevent lateral roadway departures 
is to reliably and accurately determine the vehicle’s position relative to the roadway. Tests were 
conducted on three sensing technologies designed to perform this function. One of them, the 
AURORA system, uses a downward looking video camera to track lane markings next to the 
vehicle. AURORA determines the vehicle’s position in the lane by measuring the distance 
between the vehicle’s tires and the lane marking. Laboratory and in-vehicle tests of the AURORA 
system indicate that it can estimate the lateral position of the vehicle with about lcm accuracy. 
Tests showed AURORA to be relatively insensitive to ambient lighting and road condition. How- 
ever AURORA is limited to roads with distinct painted lane markings, and has difficultly when 
the markings are severely degraded, obscured or missing. Also, AURORA does not have forward 
preview capability, resulting in occasional false alarms when negotiating curves. 

Two vision systems with forward preview’capabilities were also tested, the ALVINN and RALPH 

100 



systems, These two systems adapt their processing to the features available, and can therefore 
handle roads on which the lane markings are degraded, obscured, or missing. These two systems 
detect the road ahead of the vehicle, and can therefore anticipate curves better than AURORA. 
However, as systems with forward looking sensors, they are somewhat more sensitive than 
AURORA to harsh weather and lighting conditions. Tests showed that ALVINN can handle 
reduced visibility from rain and/or fog down to about 300m, but below that visibility level, perfor- 
mance begins to degrade. Other difficult situations for forward looking systems like ALVINN and 
RALPH are when the sun shines directly into the camera at dawn and dusk. Locating the road at 
night, using only headlights for illumination, was not a problem for these forward looking sys- 
tems. Overall, the RALPH system was shown to be capable of locating the position of the road 
ahead of the vehicle to a distance of approximately 60m with an accuracy of about 12cm on a 
wide variety of road types and environmental conditions. 

One functional goal for which there appears to be little existing technology is detection of driver 
intention. An effective lateral countermeasure must be able to discriminate between inadvertent 
lane departures due to driver inattention or impairment and intentional lane departures which 
occur when changing lanes or turning onto a cross street. Further work is required before counter- 
measures will be able to perform this important function. 

5.2 Longitudinal Technology Tests 

The most challenging functional goals for a countermeasure designed to warn of excessive speed 
are determining the geometric characteristics of the upcoming road segment, and detecting 
degraded roadway conditions. The tests conducted for this effort indicate the former of these 
goals can be performed satisfactorily using vehicle position estimates provided by differential 
GPS, in combination with an accurate digital map. Using these technologies, a longitudinal coun- 
termeasure can determine its position relative an upcoming curve to within approximately 12m. 
In the tests conducted, this position uncertainty typically resulted in variations in warning onset 
time of less than 0.5 seconds, which should be acceptable to drivers. 

The second challenging functional goal for longitudinal countermeasures, detecting degraded 
roadway conditions, appears to be more difficult. Infrastructure-based systems for detecting wet 
or icy pavement exist and appear from our tests to be capable of providing useful pavement condi- 
tion data. However these systems are currently very expensive and would probably not be practi- 
cal for widespread deployment. In addition, no algorithms appears to exist for accurately 
converting pavement condition information into an estimate of coefficient of friction, which is the 
important parameter for a longitudinal countermeasure. 

An alternative are vehicle-based techniques for estimating the instantaneous coefficient of fric- 
tion. By monitoring the dynamics of the vehicle and the forces being applied to the tires, it 
appears possible to estimate the coefficient of friction quite accurately, to within 0.05 to 0.1. How- 
ever this technique has been demonstrated only in simulation, and still needs to be verified in 
experiments on real vehicles. In addition, at best this approach can only detect degraded roadway 
conditions once the vehicle has encountered them. By then it may be too late to avoid a crash. 
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Fortunately, nearly 2/3rds of all vehicle speed related crashes occur on dry pavement. A counter- 
measure which relies on only a coarse estimate of available friction has the potential to prevent 
the majority of longitudinal crashes. Further work is required to develop these friction modeling 
algorithms, and to verify they are sufficient for an effective countermeasure. 

5.3 Driver Interface Tests 

A crucial functional goal of all collision countermeasures is to effectively interact with the driver. 
A system must be capable of conveying the danger of collision to driver in a manner that elicits an 
appropriate response in emergency situations, and does not significantly increase the driver’s 
workload during normal driving. Tests on the Iowa driving simulator suggest several interface 
configurations can achieve these goals. Below is a brief summary of the simulator experiment 
results. For more details, see Volume II of this report. 

In general, neither the lateral nor the longitudinal countermeasures appear to significantly increase 
driver workload during normal’ driving. Either haptic (tactile) or auditory interfaces appear to be 
viable means of providing the driver with feedback. However, the combination of both modalities 
can result in driver overload. Directional feedback, which provides information about the appro- 
priate driver response, is preferred by drivers, and appears to provide at least some performance 
benefit. Early onset of warnings seems to have a beneficial effect on collision avoidance maneu- 
vers, particularly for the lateral countermeasure. However the less frequent feedback from late 
onset warnings was subjectively preferred by the test subjects. 

In probably the most striking findings of these experiments, 31 percent (5 / 16) of the control sub- 
jects without road departure countermeasure support crashed when presented with a lateral distur- 
bance (a simulated wind gust) while distracted from the drive task. In the same circumstances, 
only 8 percent (4 / 48) of the driver’s with lateral countermeasure support were unable to avoid a 
crash. These result suggest that lateral countermeasures may indeed be effective at preventing 
roadway departure crashes. Unfortunately, such dramatic results were not observed in the longitu- 
dinal experiments, where none of the 64 subjects crashed due to excessive speed through curves. 
This was probably due to the conservative driving style of subjects in the simulator and the diffi- 
culty of creating dangerous longitudinal roadway departure situations in the simulator. 

5.4 Conclusions 

Tests of roadway departure collision avoidance technology conducted for Task 3 indicate that 
while no complete countermeasures are currently commercially available, the technology for such 
countermeasures exists. Further work is required to refine and integrate this technology into effec- 
tive collision avoidance systems. Additional experiments and analysis is also required to quantify 
the level of performance that such integrated countermeasures could achieve. The tools developed 
in Task 3 will be valuable assets in the development of performance specifications for run-off- 
road countermeasure to take place in the remainder of this program. 
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Abstract 
Research into self driving vehicles and driver monitor- 
ing systems has reached the point where long duration 
and distance field testing has become feasible. Unfortu- 
nately, vehicle and computer systems which provide the 
functionality to accomplish these tests have been too 
expensive or inconvenient. This paper describes a sim- 
ple, yet powerful platform, designed to work on any 
passenger vehicle, developed at Carnegie Mellon Uni- 
versity. The platform, called PANS (Portable Advanced 
Navigation Support), has allowed researchers at Cam- 
egie Mellon University to log over 6000 autonomous 
steering miles in the last 6 months. 

Introduction 

The price/performance ratio of computing has 
dropped dramatically in the past decade. This has had 
a positive effect on the size, profile and performance 
of Carnegie Mellon University’s mobile robots. In 
1986, a Chevy panel van was converted into the Nav- 
lab 1. This vehicle had 5 racks of computing equip- 
ment including a Warp supercomputer, but it wasn’t 
until the late 80’s that software systems could drive 
the Navlab 1 at its top speed of 20 m.p.h. In 1990 the 
Navlab 2, a converted U.S. Army HMMWV was 
built. This vehicle has three Spare 10 computers, 
which are used for high level data processing, along 
with two 68000-based computers used for low level 
control. On this vehicle, our software systems can 
drive over rough terrain, avoiding obstacles, at speeds 
up to 6 m.p.h. and on-road at 70 m.p.h. Both of these 
vehicles use steering wheel and drive shaft encoders 
and an expensive inertial navigation system for posi- 
tion estimation. 

Our newest vehicle, the Navlab 5, is a 1990 Pontiac 
Trans Sport donated to us by Delco Electronics. See 
Figure 1. This vehicle is used for on-road navigation 
experiments including autonomous lane keeping, lat- 
eral roadway departure warning and support, and 
curve warning. These task-specific systems run on the 
PANS platform (Portable Advanced Navigation Sup- 
port). The platform provides a computing base and I/ 
0 modalities for system developers as well as low 

level services like position estimation, steering wheel 
control, and safety monitoring. The PANS platform is 
powered from the vehicle’s cigarette lighter and is 
completely portable. 

All high level processing, including position estima- 
tion and vehicle control, is done on a Spare LX class 
portable workstation equipped with a color video dig- 
itizer. The only additional processor is an HCl 1 
microcontroller that implements functions like low 
level steering motor control and safety monitoring. 

Position estimation is done on the PANS platform 
using input from 2 sensors - a differential equipped 
GPS and a fiber optic rate gyro. When available, a 
steering wheel position encoder is also used. Local (x, 
y, heading) and global (latitude and longitude) posi- 
tion along with vehicle velocity, distance traveled, 
and turn radius, are supplied to application programs 
using an inter-process communications mechanism. 

Over the past 6 months, the PANS platform has sup- 
ported over 6000 miles of autonomous lane keeping 
including 30 miles on a closed test track where the 
Navlab 5 reached a top speed of 90 m.p.h. PANS has 
also been used by other systems to provided passive 
and active lane departure warning and support on 
many road types including city streets. Our map based 
curve warning system has used the global positioning 
data supplied by the PANS position estimation mod- 
ule to locate upcoming curves and warn the driver to 
slow down if they are approaching too quickly. 

PANS Overview 

Our goal when designing the PANS platform was to 
develop a robust yet simple system which could pro- 
vide better on-road performance than the current Nav- 
lab 2 at a substantially lower cost. 

The Navlab 2, a converted US Army HMMWV, is a 
good platform for off-road navigation, where extra 
ruggedness is necessary and short (less than 10 miles) 
missions are the norm. It is not well suited for on-road 
driving research because of its size, complexity, and 
temperamental operational nature. Also, on-road driv- 
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Figure 1. The Navlab 5, a 1990 Pontiac Trans Sport. 

ing systems have progressed to the point were experi- 
mental runs in the hundreds or even thousands of 
miles have become practical. 

PANS was designed to address these issues. It uses 
simple, well engineered commercially available com- 
ponents, that were integrated in a straightforward 
manner. And because it is designed to be used in a 
unaltered passenger vehicle, it has no special power or 
cooling requirements. Also, the future users of the 
system were involved from the beginning in the 
design, fabrication, and operationalization of all 
PANS components. This effort led to a highly usable 
and maintainable platform. 

All high level application computing is done on a 
Spare LX class portable computer manufactured by 
RDI Computer Corporation. See Figure 2. Key com- 
ponents of this computer are a 5OMHz MicroSpam 
CPU, 32 MB’s of RAM, 970 MB’s of hard disk space, 
and a 1024x768 active matrix LCD display. (For com- 
parison, this processor is about equivalent to a 
486DX2/66 using Spec ratings as a guide.) The laptop 
contains an optional Peripheral Expansion Unit which 
is equipped with two SBUS slots and space for addi- 
tional hard disk drives. The two SBUS slots contain a 
Datacell color video digitizer and a Performance 
Computer Company quad serial port expansion unit. 
The laptop runs SunOS 4.1 .x. 

The digitizer input is connected to a Sony DXC-151A 
color camera. The camera is outfitted with a Pelco 
TV8 ES-l auto iris, manual focus lens. This camera/ 
lens combination has proven to be exceptional in pro- 
viding high quality images even in harsh conditions 
like heavy shadows in bright sunlight and at night, 
using only the vehicle headlights for illumination. 
This camera provides RGB as well as NTSC video 
output. The camera can be mounted in two different 
position, depending on the software system that is in 

Figure 2. PANS components inside the Navlab 5. Figure 2. PANS components inside the Navlab 5. 

use. When using PANS to test forward looking lateral 
vehicle control and driver monitoring algorithms, it is 
mounted on the rear view mirror mounting bracket. 
See Figure 2. For the downward looking lateral lane 
position system it is mounted on a special suction cup 
plate, which is attached to the side window of the 
vehicle. 

The output from the digitizer, which is usually just a 
playthough of the incoming video signal from the 
camera along with overlay graphics, is connected to a 
Sony FDL-X600 color LCD monitor. See Figure 2. 
The display is mounted on the dashboard, directly in 
front of the forward passenger seat. 

A key component for both our local and global posi- 
tioning algorithm is a Trimble SVeeSix - CM2, differ- 
ential ready GPS system. This unit’s specifications are 
typical for entry level 6 channel GPS receivers: 25 
meter position and 0.1 meter/second velocity accu- 
racy without SA. The positional accuracy figure 
improves to 2 - 5 meters when operating in differen- 
tial mode. These numbers have been experimentally 
verified to be correct. The GPS unit is interfaced to 
the portable computer using a serial line. 

Differential corrections are supplied by a Navstar 
base station unit, mounted at a known location on a 
tower on top of our vehicle storage area. This unit 
supplies standard RTCM- 104 differential corrections 
using Motorola Cellect modems over a cellular phone 
link to the SVeeSix. This distribution mechanism has 
proven to be robust in areas of poor cellular coverage 
and over extremely long baselines. 

The second component which is integral to the PANS 
positioning system is an Andrew Corporation AUTO- 
GYRO@ with digital output. See Figure 3. This fiber 
optic gyroscope provides updates to the position esti- 
mation system running on the portable computer at 10 

. 
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Figure 3. Electronics box containing GPS, HCl 1, and’ 
power distribution equipment. Fiber optic gyroscope 
is also shown. 

Hz using a 9600 baud serial line. The unit can mea- 
sure rotations rates between 0.02 degrees/second 
and 100 degrees/second. In addition to rotation rate, 
device temperature is provided over the serial link. 
This allows for compensation of the unit’s bias drift to 
the 18 degree/hour level. (0.005 degree/second). 

Low level vehicle control and safety monitoring are 
accomplished using an HCll microcontroller. The 
HC11 uses a serial line connection to receive com- 
mands from and send information to the vehicle con- 
trol and position estimation (VCPE) module running 
on the laptop. The primary function of the HCl 1 is to 
servo the steering wheel and provide turn radius infor- 
mation to the VCPE module. The HCl 1 is equipped 
with a quadrature decoder board and a digital to ana- 
log converter. The quadrature decoder board provides 
the current steering wheel position as given by the 
steering wheel encoder. A PID control algorithm run- 
ning on the HC 11 uses this information along with the 
target steering position supplied by the VCPE module 
to compute an appropriate steering motor torque, 
which is passed to the motor using the D/A board. 

The second function of the HCl 1 is to monitor system 
safety at a low level. (High level safety measures are 
implemented in the VCPE module.) There are five 
mechanism for doing this. The first is through moni- 
toring commands from the VCPE module. This mod- 
ule is the HCl I’s link to the rest of the system. If for 
any reason, the HC 11 stops receiving commands from 
the VCPE module, it disengages the steering wheel by 
removing power to the steering motor. The second 
safety mechanism associated with the HC 11 is the 
user engage/kill switch. The switch, which is typically 
mounted on the dashboard of the vehicle, allows the 
user to initiate automatic steering control and to 

quickly stop it if the situation warrants. Again, this is 
done by removing power to the steering motor. The 
third safety mechanism that the HCl1 provides is a 
heartbeat signal, which goes to a separate, custom 
monitoring board. If the heartbeat signal is ever 
absent, the monitoring board can independently cut 
power to the steering motor. The fourth safety mecha- 
nism is the steering motor itself. It is intentionally 
underpowered, and can provide a peak torque of only 
2 ft-lbs. This torque is sufficient to servo the wheel to 
a desired position, but is small enough to be easily 
overcome by the safety driver in case he must take 
over. The final safety mechanism is steering wheel 
position error monitoring. This safety mechanism is 
provided so that the system does not continue to fight 
the safety driver if intervention is necessary. This 
mechanism is implemented by removing power to the 
steering motor if the steering wheel has not moved 
toward its commanded position within a short period 
of time. In all cases, if power is cut to the steering 
motor, the user must actively reset the safety system 
before autonomous steering control can resume. 

The PANS platform requires very little power. It uses 
about 140 watts, most of which are required for the 
portable computer. The power breakdown is as fol- 
lows: computer 90 watts, camera 12 watts, LCD dis- 
play 9 watts, fiber optic gyroscope 7.5 watts, GPS 1.4 
watts, other 10 watts. Because of these minimal 
requirements, the system is operated from the ciga- 
rette lighter of the Navlab 5. When the steering motor 
is used during autonomous control experiments, an 
additional 72 watts (maximum) of power is needed. 
The motor is also powered from vehicle’s electrical 
system, but a separate connector is used to avoid 
overloading the cigarette lighter circuitry. 

The final piece of hardware is the steering wheel 
motor and encoder. Although not strictly part of 
PANS, it is required for autonomous lane keeping 
experiments. The motor is from a retired robot arm 
and is equipped with a H.P. optical quadrature 
encoder. It drives the steering wheel using a chain and 
is mounted under the dash on a modified steering col- 
umn support bracket. The motor has been sized so 
that it provides adequate torque for highway driving 
but still allows easy operator takeover - about as diffi- 
cult as driving with reduced power steering. 

Position Estimation 

A design goal of the PANS platform was to accurately 
estimate vehicle state parameters without physically 
attaching sensors to the vehicle, maximizing portabil- 
ity from one vehicle to another. This is achieved by 
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Figure 4. Two runs on the 100 km course. 

circumventing contact sensors such as potentiometers 
or position encoders whenever possible, and instead 
relying on non-contact sensors, including a GPS and 
gyroscope. 

Part of the PANS platform is the Vehicle Control and 
Position Estimation (VCPE) module. In addition to 
providing vehicle control and safety services, this 
modules provides global and local position estimates 
to high level applications. Position estimates are 
updated at 20 Hz using the latest available sensor 
data. 

Global and Local Positioning 
Global position is provided using information from 
the GPS in either latitude/longitude/altitude or UTM 
coordinates. The VCPE module automatically detects 
when the GPS is operating in 2D or 3D mode, as well 
as when differential corrections are available, and 
provides this status information, along with global 
position data, to client applications. Because of the 
low update rate of the GPS, linear extrapolation is 
done between new GPS readings so that more accu- 
rate global position estimates can be attained. Using 
the GPS in differential mode, vehicle position can be 
determined to within 5 meters. 

The VCPE module also provides a local estimate of 
2D position. The origin of the local coordinate frame 
is the location where the vehicle was positioned when 
the VCPE module was started. The coordinate frame 
is arranged so that north, as provided by the GPS, is 
the positive Y axis. The positive X axis is defined to 
be due east (90 degrees clockwise from north.) In 
addition to X and Y position, the VCPE module pro- 
vides estimates of heading, turn radius (rate of change 
of heading), vehicle velocity and total distance trav- 
eled. The following paragraphs detail how each of 
these values is calculated. 

-400.0' . ' . ' ' ' . ' . ' 
-900.0 -700.0 -500.0 -3:;; -100.0 100.0 300.0 

Figure 5. Start/end points for the two 100 km runs. 

X Y Position 
New X Y position estimates are calculated using 
velocity and heading information from the GPS along 
with turn rate information from the gyroscope or 
steering encoder. Specifically, new X Y positions are 
computed by projecting along the current vehicle turn 
radius. The projection begins at the old vehicle posi- 
tion (x, y, heading) and continues along the turn 
radius for a distance determined by the current vehicle 
velocity and the time since the last update. Although 
simple, this method is robust in many different sce- 
narios including both stop-and-go city driving as well 
as high speed highway driving. The X Y position 
accuracy of the VCPE is consistently below 0.8% of 
distance traveled and has exhibited even better perfor- 
mance during trials on closed test t.racks.In one exper- 
iment to determine the accuracy of local position 
estimation, the vehicle was driven four times around a 
closed, 12 km, test track at Transportation Research 
Center (TRC) in Columbus, Ohio. During the experi- 
ment, the vehicle was traveling at velocities between 
35 and 40 meters/second. At the end of this experi- 
mented, the accumulated error was less than 40 
meters. This figure is less than 0.1% of distance trav- 
eled. 

Two runs on a more challenging 100 km course that 
included downtown city streets, interstate highways 
and rural roads are shown in Figure 4. This course 
included several stoplights and U turns, which lead to 
vehicle velocities between 0 to 25 meters/second. 
This figure clearly shows position differences accu- 
mulating between the two runs as the distance trav- 
eled increases. The overall local position error was 
still quite small. On one of the runs, the error was 
about 0.35% of distance traveled while on the other it 
was about 0.77%. A close-up of the start/end points of 
the two runs is shown in Figure 5. 
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Heading 
Heading is determined using information from the 
GPS system. The GPS provides an estimate of head- 
ing once per second. Between GPS readings, heading 
is updated using turn rate information from the fiber 
optic gyroscope or the steering wheel encoder. When 
new GPS heading data become available, it over- 
writes the current heading. 

‘km Radius 
The vehicle turn radius is usually derived from two 
sources - the fiber optic gyroscope and the steering 
wheel encoder. Both instruments can be used indepen- 
dently of each other, but normally, the gyroscope is 
used to calibrate the steering wheel encoder. (The 
steering wheel encoder can also be manually cali- 
brated.) 

Calibration is accomplished by computing the turn 
radius using rate of change of heading information 
from the gyroscope along with the current vehicle 
speed. The formulation is shown in the following 
equation. 

radius = 180 l velocity 
TL*heading 

radius is in meters 
velocity is in meters/second 
heading is in degrees/second 

The VCPE module compares the gyroscope-based 
and steering wheel encoder turn radius measures, and 
slowly adapts the encoder calibration parameters so 
that the two sensors match. We have found that in 
order to insure accuracy using this approach, the vehi- 
cle speed must be greater than 10 meters/second. 
Using this technique, the current vehicle curvature 
can be estimated with an accuracy of 0.000333 l/ 
meters. 

The gyroscope can also be used stand-alone to deter- 
mine the turn radius when a steering wheel encoder is 
not available. While the 10 Hz output of the gyro- 
scope is not sufficient for closed loop control, this 
level of accuracy and update frequency is more than 
sufficient for monitoring the driver’s steering com- 
mand in a lane departure warning system, 

Finally, if neither gyroscope or steering wheel 
encoder are available, turn radius is computed using 
the vehicle speed and differentiating the GPS supplied 
heading information. Because updates only occur 
about once per second in this mode, it is used only to 
estimate the current vehicle position - not for control- 
ling the vehicle or as a measure used for driver warn- 

ing. 

Velocity 
Vehicle velocity is acquired using the GPS. The GPS 
specifications state a velocity accuracy of 0.1 meter/ 
second. Although not verified to this level, we have 
empirically determined that it is accurate to about 
0.5 meters/second ( 1 mile/hour). 

Systems 

We are currently investigating a number of systems 
for collision warning and autonomous control using 
the PANS platform. These include systems for moni- 
toring or controlling the vehicle’s lateral position and 
systems for warning when the vehicle is approaching 
a curve at an excessive speed. 

ALVINN: ALVINN is a forward-looking, vision 
based driving system that uses a neural network to 
learn the mapping between road images and appropri- 
ate vehicle turn radius. By watching a person drive for 
about 5 minutes, it can learn the relevant features 
required for driving[3]. It has successfully driven our 
testbed vehicles on unlined paved paths, jeep trails, 
lined city streets and interstate highways. In the latter 
domain, ALVINN has driven for 90 consecutive miles 
at speeds up to 70 m.p.h. Current research is focus- 
sing on using ALVINN to detect and move into other 
driving lanes[2]. 

Additionally, ALVINN is being used as a lane depar- 
ture warning system. In this mode of operation, 
ALVINN’s output turn radius, the driver’s current turn 
radius, and the vehicle speed, are used to compute the 
Time to Trajectory Divergence. This measure incor- 
porates the width of the road and vehicle, as well as 
typical driver response times, to alert the driver when 
he is departing the roadway. The alert can be either 
audible or tactile. The tactile alarm is implemented as 
a 10 Hz vibration of the steering wheel generated by 
the steering motor. If the driver does not begin to cor- 
rect the vehicle direction after the alert is given, the 
system takes control of the steering wheel and returns 
the vehicle to the driving lane. 

AURORA: AURORA is a downward-looking, vision 
based system that tracks either the yellow or white 
center or edge line(s). It is capable of tracking either 
solid or dashed lines and has been shown to perform 
robustly even when the markings are worn or their 
appearance in the image is degraded due to rain or 
snow. This system is capable of providing lane posi- 
tion accurate to within 2 cm. 

AURORA has been extensively tested as a lane 
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departure system. AURORA computes a different 
measure of lane departure warning danger than the 
AIVINN system. The measure AURORA computes 
is called Time to Lane Crossing (TLC) and is the time 
it will take one of the vehicle’s tires to cross the lane 
boundary if the vehicle continues along its current tra- 
jectory. If the TLC falls below a threshold, AURORA 
triggers an audible or tactile alarm similar to the ones 
provided by ALVINNI: 11. 

AURORA may also be especially useful for platoon- 
ing, when the road surface immediately in front of the 
vehicle is blocked. In this case, a forward looking sys- 
tem can no longer see important road features. 
AURORA is currently being tested to determine its 
feasibility for use in this type of application. 

Map Positioning: We have implemented a curve 
speed warning system that will alert the driver if the 
current travel speed is too dangerous for negotiating 
an upcoming curve. This system tries to estimate the 
limiting speed for a particular driving condition rather 
than using posted speed limits as a guideline. The 
traction available for the safe passage is a based on 
many independent variable including road surface 
macro and micro structure, tire condition and infla- 
tion, and road condition. In addition to the traction 
factors, road curvature and super elevation, visibility, 
and driver experience and comfort determine the safe 
speed for a particular point in the curve. 

The current curve warning system takes into consider- 
ation the vehicle velocity, road friction, road super 
elevation, road curvature, and driver reaction time and 
comfort (safe deceleration). Using these parameters, 
the system calculates the distance to the next curve 
using data from the VCPE module and a stored map, 
and compares the vehicle’s current velocity with the 
safe speed for traversing the curve. If the velocity 
exceeds safe speed as the vehicle approaches the 
curve, the system triggers an audible or tactile alarm 
to warn the driver to slow down. 

Future Work 

Although the current PANS platform is an effective 
research tool, there remain steps which could further 
reduce costs and upgrade functionality. Although 
some of the functionality added will not likely be 
transferable to vehicles other than the Navlab 5, such 
a sacrifice is necessary to continue improving overall 
system performance. 

The first priority is to move away from using an 
expensive Spare workstation, Plans are under devel- 
opment to port all existing code to a PC based plat- 

form. This step will drastically reduce cost but still 
maintain, and maybe even increase, performance. We 
feel this is the logical next step toward a completely 
embedded system. 

Next, we would like to add more vehicle monitoring 
capabilities. Devices we would like to monitor 
include brake and head lights, turn signals and wind- 
shield wipers. Input from these devices will allow our 
driver warning systems to provide appropriate warn- 
ing in changing environmental conditions as well as 
suppress false indicators. 

Finally, we would like to add to the autonomous capa- 
bilities of the system by providing throttle control. 
This will most likely be done using the existing cruise 
control interface, which should provide a simple yet 
effective method for investigating algorithms for safe 
headway maintenance. To provide high level input the 
throttle control system, we are planning to add addi- 
tional sensing capabilities to the PANS platform, 
including a millimeter wave radar system currently 
under development at CMU. 
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Appendix B: Sony 7 11 Camera Calibration Data 



SONY XC-711 CCD CAMERA CHARAC-TION TEST DESCRII’TIO~ 

The camera characterization tests conducted on the SONY XC-711 CCD color camera with 
the Computar MlOZ-1118AMS zoom lens included signal transfer tests and noise 
measurements. The camera system was set with gamma correction off, electronic shutter 
off, and gain control setting at AGC on and AGC off (OdB gain). The signal transfer 
characteristics were tested using a grayscale chart, a light box, a monitor and an 
oscilloscope. The output waveforms of the video, red, green and blue channels were 
recorded to obtain the signal transfer curves at various scene luminance levels and to 
characterize the AGC of the camera system. The camera signal output (in millivolts above 
blanking level) recorded as a function of the scene luminance (in footlamberts), the brightest 
scene luminance, and AGC action are plotted in the 16 figures enclosed. In each of the four 
channels (video, red, green, and blue), the responses of the SONY XC-711 camera system 
with and without AGC were measured for the four brightest scene luminance levels. The 
curves indicate that the camera begins to saturate at scene luminance levels above -200 
footlamberts without the AGC. With AGC on at these high scene luminance levels, the 
camera reduces the signal transfer curve to prevent signal saturation. On the other hand, 
when brightest scene luminance levels are reduced, the camera attempts to increase the signal 
transfer curve to fully utilize its dynamic range. The noise levels of the four channels were 
also measured on the oscilloscope. The average peak-to-peak noise levels measured with the 
AGC on for the four channels are: 30 mVp-p for the video channel, 30 mVp-p for the red 
channel, 25 mVp-p for the green channel and 35 mVp-p for the blue channel. Also included 
in this package are the spectral characteristics of the camera and the lens as specified by the 
manufacturers. 
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